scholarly journals Serverless Edge Computing for Green Oil and Gas Industry

Author(s):  
Razin Farhan Hussain ◽  
Mohsen Amini Salehi ◽  
Omid Semiari
2021 ◽  
Author(s):  
Ethar H. K. Alkamil ◽  
Ammar A. Mutlag ◽  
Haider W. Alsaffar ◽  
Mustafa H. Sabah

Abstract Recently, the oil and gas industry faced several crucial challenges affecting the global energy market, including the Covid-19 outbreak, fluctuations in oil prices with considerable uncertainty, dramatically increased environmental regulations, and digital cybersecurity challenges. Therefore, the industrial internet of things (IIoT) may provide needed hybrid cloud and fog computing to analyze huge amounts of sensitive data from sensors and actuators to monitor oil rigs and wells closely, thereby better controlling global oil production. Improved quality of service (QoS) is possible with the fog computing, since it can alleviate challenges that a standard isolated cloud can't handle, an extended cloud located near underlying nodes is being developed. The paradigm of cloud computing is not sufficient to meet the needs of the already extensively utilized IIoT (i.e., edge) applications (e.g., low latency and jitter, context awareness, and mobility support) for a variety of reasons (e.g., health care and sensor networks). Couple of paradigms just like mobile edge computing, fog computing, and mobile cloud computing, have arisen in recently to meet these criteria. Fog computing helps to optimize services and create better user experiences, such as faster responses for critical, time-sensitive needs. At the same time, it also invites problems, such as overload, underload, and disparity in resource usage, including latency, time responses, throughput, etc. The comprehensive review presented in this work shows that fog devices have highly constrained environments and limited hardware capabilities. The existing cloud computing infrastructure is not capable of processing all data in a centralized manner because of the network bandwidth costs and response latency requirements. Therefore, fog computing demonstrated, instead of edge computing, and referred to as "the enabling technologies allowing computation to be performed at the edge of the network, on downstream data on behalf of cloud services and upstream data on behalf of IIoT services" (Shi et al., 2016) is more effective for data processing when data sources are close together. A review of fog and cloud computing literature suggests that fog is better than cloud computing because fog computing performs time-dependent computations better than cloud computing. The cloud is inefficient for latency-sensitive multimedia services and other time-sensitive applications since it is accessible over the internet, like the real-time monitoring, automation, and optimization of petroleum industry operations. As a result, a growing number of IIoT projects are dispersing fog computing capacity throughout the edge network as well as through data centers and the public cloud. A comprehensive review of fog computing features is presented here, with the potential of using it in the petroleum industry. Fog computing can provide a rapid response for applications through preprocess and filter data. Data that has been trimmed can then be transmitted to the cloud for additional analysis and better service delivery.


2020 ◽  
Vol 78 (7) ◽  
pp. 861-868
Author(s):  
Casper Wassink ◽  
Marc Grenier ◽  
Oliver Roy ◽  
Neil Pearson

2004 ◽  
pp. 51-69 ◽  
Author(s):  
E. Sharipova ◽  
I. Tcherkashin

Federal tax revenues from the main sectors of the Russian economy after the 1998 crisis are examined in the article. Authors present the structure of revenues from these sectors by main taxes for 1999-2003 and prospects for 2004. Emphasis is given to an increasing dependence of budget on revenues from oil and gas industries. The share of proceeds from these sectors has reached 1/3 of total federal revenues. To explain this fact world oil prices dynamics and changes in tax legislation in Russia are considered. Empirical results show strong dependence of budget revenues on oil prices. The analysis of changes in tax legislation in oil and gas industry shows that the government has managed to redistribute resource rent in favor of the state.


2011 ◽  
pp. 19-33
Author(s):  
A. Oleinik

The article deals with the issues of political and economic power as well as their constellation on the market. The theory of public choice and the theory of public contract are confronted with an approach centered on the power triad. If structured in the power triad, interactions among states representatives, businesses with structural advantages and businesses without structural advantages allow capturing administrative rents. The political power of the ruling elites coexists with economic power of certain members of the business community. The situation in the oil and gas industry, the retail trade and the road construction and operation industry in Russia illustrates key moments in the proposed analysis.


2019 ◽  
Vol 16 (6) ◽  
pp. 50-59
Author(s):  
O. P. Trubitsina ◽  
V. N. Bashkin

The article is devoted to the consideration of geopolitical challenges for the analysis of geoenvironmental risks (GERs) in the hydrocarbon development of the Arctic territory. Geopolitical risks (GPRs), like GERs, can be transformed into opposite external environment factors of oil and gas industry facilities in the form of additional opportunities or threats, which the authors identify in detail for each type of risk. This is necessary for further development of methodological base of expert methods for GER management in the context of the implementational proposed two-stage model of the GER analysis taking to account GPR for the improvement of effectiveness making decisions to ensure optimal operation of the facility oil and gas industry and minimize the impact on the environment in the geopolitical conditions of the Arctic.The authors declare no conflict of interest


Sign in / Sign up

Export Citation Format

Share Document