Mechatronic Design and Control of a 3D Printed Low Cost Robotic Upper Limb

Author(s):  
Duncan Carter-Davies ◽  
Junshen Chen ◽  
Fei Chen ◽  
Miao Li ◽  
Chenguang Yang
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 572
Author(s):  
Mads Jochumsen ◽  
Taha Al Muhammadee Janjua ◽  
Juan Carlos Arceo ◽  
Jimmy Lauber ◽  
Emilie Simoneau Buessinger ◽  
...  

Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement. Motor-evoked potentials (MEPs) elicited using transcranial magnetic stimulation were measured before, immediately after, and 30 min after BCI training with the exoskeleton. The BCI system had a true positive rate of 86 ± 12% with 1.20 ± 0.57 false detections per minute. Compared to the measurement before the BCI training, the MEPs increased by 35 ± 60% immediately after and 67 ± 60% 30 min after the BCI training. There was no association between the BCI performance and the induction of plasticity. In conclusion, it is possible to detect imaginary movements using an open-source BCI setup and control a cheap 3D-printed exoskeleton that when combined with the BCI can induce neural plasticity. These findings may promote the availability of BCI technology for rehabilitation clinics and home-use. However, the usability must be improved, and further tests are needed with stroke patients.


Author(s):  
Niko Giannakakos ◽  
Ayse Tekes ◽  
Tris Utschig

Abstract Mechanical engineering students often learn the fundamentals of vibrations along with the time response of underdamped, critically damped, and overdamped systems in machine dynamics and vibrations courses without any validation or visualization through hands-on experimental learning activities. As these courses are highly theoretical, students find it difficult to connect theory to practical fundamentals such as modeling of a mechanical system, finding components of the system using experimental data, designing a system to achieve a desired response, or designing a passive vibration isolator to reduce transmitted vibrations on a primary system. Further, available educational laboratory equipment demonstrating vibrations, dynamics and control is expensive, bulky, and not portable. To address these issues, we developed a low-cost, 3D printed, portable laboratory equipment (3D-PLE) system consisting of primary and secondary carts, rail, linear actuator, Arduino, and compliant flexures connecting the carts. Most of the educational systems consist of a mass limited to 1DOF motion and multi-degrees of freedom systems can be created using mechanical springs. However, in real-world applications oscillations in a system are not necessarily due to mechanical springs. Anything flexible, or thin and long, can be represented by a spring as seen in torsional systems. We incorporated 3D printed and two monolithically designed rigid arms connected with a flexure hinge of various stiffness. The carts are designed in a way such that two flexible links can be attached from both sides and allow more loads to be added on each cart. The system can be utilized to demonstrate fundamentals of vibrations and test designs of passive isolators to dampen the oscillations of the primary cart.


2015 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Jorge Zuniga ◽  
Dimitrios Katsavelis ◽  
Jean Peck ◽  
John Stollberg ◽  
Marc Petrykowski ◽  
...  

Author(s):  
Goeran Fiedler ◽  
Saiph Savage ◽  
Jon Schull ◽  
Jennifer Mankoff

The emergence of 3D-printed upper limb prosthetic devices a couple of years ago, spearheaded substantially by the e-NABLE community (1, 2), has triggered a variety of reactions, ranging from euphoric press coverage predicting a new age of low-cost universally obtainable prosthetic solutions to anxious reluctance by clinicians fearing the demise of high-quality professional health care provision (3, 4). The circumstance that untrained volunteers produce e-NABLE devices on their hobby-grade 3D-printers (5) was both hailed as a revolutionary paradigm shift suited to address a host of current challenges in health care economics, and derided as inappropriate intrusion into long-standing training and certification standards of a well-regulated profession. That many of the early generation e-NABLE devices targeted young patients with partial hand amputation (6) was interpreted by proponents as finally offering this neglected population long-desired solutions, whereas skeptics felt that many of the recipients of such devices would traditionally have been deemed to have a residual functional enough to be a contra-indication for a prosthesis (7).Article PDF file:  https://jps.library.utoronto.ca/index.php/cpoj/article/view/29970/22869 How to cite: Fiedler G, Savage S, Schull J, Mankoff J. The Case For Broad-Range Outcome Assessment Across Upper Limb Device Classes. Canadian Prosthetics & Orthotics Journal. Volume1, Issue1, No4, 2018. DOI: https://doi.org/10.33137/cpoj.v1i1.29970


2020 ◽  
Vol 318 ◽  
pp. 01039
Author(s):  
Abdalla M. Omar ◽  
Mohamed Hassan

Every year there are about 3500-5200 people suffering from upper limb amputations, most of which are wrist disarticulation and transcarpal. This paper investigates current upper limb prostheses and presents the disadvantages of current prostheses, including limited degrees of freedom (DOF), limited range of motion, weight, customizability, and appearance. The proposed design is the first stage of a series of papers that proposes designs that are compatible with shape morphing materials. The use of these materials as actuators allows the development and design of more advanced upper limb prostheses. Therefore, the prosthesis is modelled as needed for patients with transcarpal/wrist disarticulation amputations. The proposed model has 27 degrees of freedom (DOF), reduced weight, low cost, improved appearance, and is printable to fit.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kasim Serbest ◽  
Mustafa Kutlu ◽  
Osman Eldogan ◽  
Ibrahim Tekeoglu

Abstract Rehabilitation at home is rapidly increasing. Although successful results are achieved with treatment methods applied in rehabilitation clinics, there are also some disadvantages in this process, such as dependence on an expert and high costs. Developments in mechatronic technologies have accelerated the development of assistive devices which are designed for use at home. One of the rehabilitation applications is on a hemiplegic hand. In previous studies, some useful devices have been developed for hand rehabilitation. In this study, we suggest a new, low-cost and wearable robotic glove for hand rehabilitation. The specific component of this device is the spring and cable driven system proposed for transmission of motion and force. The device was tested on both unimpaired participants and patients with the hemiplegic hand, and it was proven to be beneficial for hand rehabilitation. As a result of trials with unimpaired participants, the muscle activation of the extensor digitorum and the flexor carpi radialis were increased by 184.1 and 197.8% respectively. The weight of the device was less than 400 g, thanks to 3D printed parts.


Author(s):  
José Luis Viramontes-Reyna ◽  
Josafat Moreno-Silva ◽  
José Guadalupe Montelongo-Sierra ◽  
Erasmo Velazquez-Leyva

This document presents the results obtained from the application of the law of Lens to correctly identify the polarity of the windings in a three-phase motor with 6 exposed terminals, when the corresponding labeling is not in any situation; Prior to identifying the polarity, it should be considered to have the pairs of the three windings located. For the polarity, it is proposed to feed with a voltage of 12 Vrms to one of the windings, which are identified randomly as W1 and W2, where W1 is connected to the voltage phase of 12 Vrms of the signal and W2 to the voltage reference to 0V; by means of voltage induction and considering the law of Lens, the remaining 4 terminals can be identified and labeled as V1, V2, U1 and U2. For this process a microcontroller and control elements with low cost are used.


2020 ◽  
Author(s):  
Merel van der Stelt ◽  
Martin P. Grobusch ◽  
Abdul R. Koroma ◽  
Marco Papenburg ◽  
Ismaila Kebbie ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 68-81
Author(s):  
Abu Sadath ◽  
Farhana Afroz ◽  
Hosne Ara ◽  
Abdulla-Al Kafy

Rivers are the lifeline of Bangladesh economy and serve as the source of water supply, fisheries, irrigation for agriculture, low-cost transport, generate electricity and conserve biodiversity. The Ichamati River situated in Pabna, Bangladesh is also a blessing for the city. However, recently, due to the irregular and unplanned activities adjacent to the riverside, the life, flow and water quality of the river is in a vulnerable condition. This study aims to identify the present status of the Ichamati River and provide an effective design approach and policy measures in restoring the river flow and control water pollution. The data was collected from the questioner surveys, key informant interviews and focus group discussions. Results suggest that several factors such as the construction of an illegal settlement, unplanned waste dumping, disposal of fiscal sludge through sewerage connection, lack of awareness among people regarding the importance of river biodiversity and absence of riverfront development and conservation plan are responsible for water pollution, inconsistent water flow and damaging the life cycle of Ichamati river. The design approach and policy measures were developed based on the perceptions of local community people, experts and government officials. The suggested policy measures will help to restore the flow of the river and reduce the water pollution, and the design approach will ensure the economic benefit of the riverfront development in future.


2021 ◽  
pp. 096100062110165
Author(s):  
Mohammadhiwa Abdekhoda ◽  
Fatemeh Ranjbaran ◽  
Asghar Sattari

This study was conducted with the aim of evaluating the role of information and information resources in the awareness, control, and prevention of COVID-19. This study was a descriptive-analytical survey in which 450 participants were selected for the study. The data collection instrument was a researcher-made questionnaire. Descriptive and inferential statistics were used to analyze the data through SPSS. The findings show that a wide range of mass media has become well known as information resources for COVID-19. Other findings indicate a significant statistical difference in the rate of using information resources during COVID-19 based on age and gender; however, this difference is not significant regarding the reliability of information resources with regard to age and gender. Health information has an undisputable role in the prevention and control of pandemic diseases such as COVID-19. Providing accurate, reliable, and evidence-based information in a timely manner for the use of resources and information channels related to COVID-19 can be a fast and low-cost strategic approach in confronting this disease.


Sign in / Sign up

Export Citation Format

Share Document