An Investigation of the Relationship between Agricultural Production and Greenhouse Gas Emissions

Author(s):  
Gokhan Tezcan ◽  
Serdar SOLAK
2020 ◽  
Vol 12 (22) ◽  
pp. 9676
Author(s):  
Renato Passaro ◽  
Ivana Quinto ◽  
Giuseppe Scandurra ◽  
Antonio Thomas

To promote the sustainable development of developing countries through the reduction of greenhouse gas emissions and the impact of anthropogenic activity on the atmosphere, for some decades, developed countries and international institutions provided an increasing amount of climate financing tools, allocated through multiple channels. After the Copenhagen Conference of the Parties (COP15) held in 2009, developed country parties pledged to provide new and additional resources, including forestry and investments, approaching USD 30 billion for the period 2010–2012 and with balanced allocation between mitigation and adaptation. This collective commitment has come to be known as “Fast-start Finance” (FSF). To assess the key factors contributing to the amount and distribution of funding supporting projects using FSF, in this paper, we investigate the relationship between FSF, energy use, and greenhouse gas emissions. To this aim, two main analyses were carried out: (i) a qualitative examination of donor’s funding strategies and (ii) a quantitative analysis deepening the relationship between climate finance and greenhouse gas emissions by beneficiaries through a quantile regression model. Findings indicate a need to redesign the current aid scheme, and suggest an increasing need for financed projects to support sustainable economic innovation patterns of developing countries while paying close attention to the environmental policy context. The purpose was to provide useful feedback to policymakers to assess the effectiveness of the flow of funding for environmental plans and to avoid excessive aid dispersal and consequently a reduction of the FSF benefits.


Daedalus ◽  
2015 ◽  
Vol 144 (4) ◽  
pp. 8-23 ◽  
Author(s):  
David Tilman ◽  
Michael Clark

Secure and nutritious food supplies are the foundation of human health and development, and of stable societies. Yet food production also poses significant threats to the environment through greenhouse gas emissions, pollution from fertilizers and pesticides, and the loss of biodiversity and ecosystem services from the conversion of vast amounts of natural ecosystems into croplands and pastures. Global agricultural production is on a trajectory to double by 2050 because of both increases in the global population and the dietary changes associated with growing incomes. Here we examine the environmental problems that would result from these dietary shifts toward greater meat and calorie consumption and from the increase in agricultural production needed to provide this food. Several solutions, all of which are possible with current knowledge and technology, could substantially reduce agriculture's environmental impacts on greenhouse gas emissions, land clearing, and threats to biodiversity. In particular, the adoption of healthier diets and investment in increasing crop yields in developing nations would greatly reduce the environmental impacts of agriculture, lead to greater global health, and provide a path toward a secure and nutritious food supply for developing nations.


EDIS ◽  
2009 ◽  
Vol 2009 (5) ◽  
Author(s):  
Alan L. Wright ◽  
K. Ramesh Reddy

SL288, a 5-page illustrated fact sheet by Alan L. Wright and K. R. Reddy, describes the relationship between global warming and increases in greenhouse gas emissions, the role of Everglades wetlands in the global carbon cycle and their contribution to greenhouse gas production, and how hydrologic conditions and eutrophication in the Everglades influence the rates and types of greenhouse gases emitted. Includes references. Published by the UF Department of Soil and Water Science, May 2009. SL288/SS501: Greenhouse Gas Emissions in the Everglades: The Role of Hydrologic Conditions (ufl.edu)


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4904
Author(s):  
Zofia Koloszko-Chomentowska ◽  
Leszek Sieczko ◽  
Roman Trochimczuk

The negative impact of agricultural production on the environment is manifested, above all, in the emission of greenhouse gases (GHG). The goals of this study were to estimate methane and nitrous oxide emissions at the level of individual farms and indicate differences in emissions depending on the type of production, and to investigate dependencies between greenhouse gas emissions and economic indicators. Methane and nitrous oxide emissions were estimated at three types of farms in Poland, based on FADN data: field crops, milk, and mixed. Data were from 2004–2018. Statistical analysis confirmed the relationship between greenhouse gas emissions and economic performance. On milk farms, the value of methane and nitrous oxide emissions increased with increased net value added and farm income. Milk farms reached the highest land productivity and the highest level of income per 1 ha of farmland. On field crops farms, the relationship between net value added and farm income and methane and nitrous oxide emissions was negative. Animals remain a strong determinant of methane and nitrous oxide emissions, and the emissions at milk farms were the highest. On mixed farms, emissions result from intensive livestock and crop production. In farms of the field crops type, emissions were the lowest and mainly concerned crops.


Sign in / Sign up

Export Citation Format

Share Document