Long term behavior of passive components for high temperature applications-an update

Author(s):  
R.R. Grzybowski
Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000148-000153
Author(s):  
Kenneth P. Dowhower

Abstract The electrical interconnect is an essential component of most electrical system configurations. The ability of the interconnect interface to reliably transmit power and / or data throughout the system is critical to its overall performance. Degradation of the mechanical or electrical properties of the interface can reduce the system performance or in severe cases, make it inoperable. There are several factors which can inhibit the performance of the interconnect, one of most severe is long term exposure to elevated temperatures. This effect can also be accelerated when combined with other severe environmental conditions such as high vibration and physical shock, which are often found in down hole oil and gas well drilling applications. This type of exposure can significantly degrade the essential properties of a reliable electrical interface such as contact resistance, mechanical stability, and electrical isolation. This paper will present options for design features and material properties that can be incorporated into an interconnect design that will mitigate these adverse effects. Specifically, this paper addresses the material properties of the contact interface and its surface treatment, the mechanical and electrical properties of the insulating material, the robustness of the mating features and the contact retention system. Two key features of the contact interface that are discussed are the stability of its electrical resistance and the robustness of its mechanical retention. Long term exposure to high temperatures typically induces stress relaxation in the compliant members of the contact interface that are required to produce a stable, low resistance interface, while allowing for a high level of mate / unmate durability. Stress relaxation can also reduce the mechanical stability of the contact interface where metal or plastic retention features are utilized. In the case of retention through epoxy bonding, imparting thermal stress at the bonding surface can result in loss of adhesion and / or retention. The surface treatment of the contact interface has also been shown to be a contributing factor in its electrical stability in high temperature applications. Typically, the interface is plated with a hard gold over nickel finish, which provides a noble interface that is corrosion resistant, but with the hardness required to withstand many mate / unmate cycles. A small percentage of nickel or cobalt are typically alloyed with the gold to produce the required hardness. In most applications, it has minimal impact on the overall resistance of the contact interface. In high temperature applications, however, it can tend to diffuse through the gold to the contact interface. Since these materials have a higher resistivity, they can negatively affect the resistance of the interface. The impact of this effect is reviewed in this paper. Finally, results of the evaluations on high temperature insulating materials and bonding epoxies are presented in this paper. The mechanical and dielectric stability of the insulating materials and the adhesion properties of the epoxy used for contact retention were the primary concerns for their evaluation. The verification tests that included at temperature exposure were conducted at +260°C to simulate extreme use cases for most down hole applications.


2010 ◽  
Vol 645-648 ◽  
pp. 745-748 ◽  
Author(s):  
M. Guziewicz ◽  
Ryszard Kisiel ◽  
Krystyna Gołaszewska ◽  
Marek Wzorek ◽  
Anna Stonert ◽  
...  

The stability of Au wire connections to n-SiC/Ti ohmic contacts and to n-SiC/Ni ohmic contacts with top Au or Pt layers has been investigated. Long-term tests of the connections are performed in air at 400oC. Evaluation of electrical parameters, morphology and structure of the metallization as well as the strength of Au joint show stable Au wire bonds to the metallization with Ti-ohmic contacts.


2017 ◽  
Vol 100 (9) ◽  
pp. 4101-4109 ◽  
Author(s):  
Renato S. M. Almeida ◽  
Eduardo L. Bergmüller ◽  
Hanna Lührs ◽  
Michael Wendschuh ◽  
Bernd Clauß ◽  
...  

2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000082-000086
Author(s):  
Jeff Watson ◽  
Gustavo Castro

This paper discusses a very low noise instrumentation amplifier designed specifically for high temperature applications. The device uses a proprietary silicon-on-insulator process that minimizes parasitic leakage currents at elevated temperature. Variance in device parameters are managed to maintain high performance over a wide temperature range. Layout and packaging considerations that would affect long term reliability are addressed. The amplifier is well characterized above 200°C and attains much higher performance than amplifiers not optimized for high temperature operation. Comprehensive reliability testing over temperature has been completed.


2019 ◽  
Vol 2019 (HiTen) ◽  
pp. 000099-000106
Author(s):  
Tom Morris

Abstract The use and growth of high temperature electronics in a variety of applications (such as oil and gas exploration and production, automotive under the hood, aerospace and satellite/space to name a few), has necessitated a closer look at the technology used in passive components (such as resistors). A variety of resistor technologies may be suitable for high temperature applications. In the paper information, on thin film technologies (both nichrome and tantalum nitride thin film information is presented), thick film, and wire-wound construction is presented, with discussions regarding their respective characteristics that make them more or less suitable for high temperature and other excessive environments. This paper presents information on resistor construction details, material information and manufacturing processing, along with test data and performance summaries under short and long term high temperature conditions. Additionally, other pertinent test data through typical environmental tests is presented Although resistors and other passive components are often taken for granted, high temperature applications can tax the performance of many resistor types. The proper selection of resistive components will insure that the stability, temperature coefficient (and temperature coefficient tracking for resistor networks), and reliability is maintained to insure reliable circuit performance.


2013 ◽  
Vol 57 (1) ◽  
pp. 2375-2383
Author(s):  
J. Suffner ◽  
C. Dobler

Sign in / Sign up

Export Citation Format

Share Document