Characteristics of Gold Wire Bonds with Ti- and Ni-Based Contact Metallization to n-SiC for High Temperature Applications

2010 ◽  
Vol 645-648 ◽  
pp. 745-748 ◽  
Author(s):  
M. Guziewicz ◽  
Ryszard Kisiel ◽  
Krystyna Gołaszewska ◽  
Marek Wzorek ◽  
Anna Stonert ◽  
...  

The stability of Au wire connections to n-SiC/Ti ohmic contacts and to n-SiC/Ni ohmic contacts with top Au or Pt layers has been investigated. Long-term tests of the connections are performed in air at 400oC. Evaluation of electrical parameters, morphology and structure of the metallization as well as the strength of Au joint show stable Au wire bonds to the metallization with Ti-ohmic contacts.

2015 ◽  
Vol 32 (3) ◽  
pp. 143-148 ◽  
Author(s):  
Marcin Myśliwiec ◽  
Ryszard Kisiel ◽  
Marek Guziewicz

Purpose – The purpose of this paper is to deal with material and technological aspects of SiC diodes assembly in ceramic packages. The usefulness of combinations of different materials and assembly techniques for the creation of inner connection system in the ceramic package, as well as the formation of outer connections able to work at temperatures up to 350°C, were evaluated. Design/methodology/approach – The ceramic package consists of direct bonded copper (DBC) substrate with Cu pads electroplated by Ni or Ni/Au layers on which a SiC diode was assembled by sintering process using Ag microparticles. For the connections inside the ceramic package, the authors used Al/Ni and Au-Au material system based on aluminium or gold wire bonding. The authors sealed the ceramic package with glass encapsulation and achieved a full encapsulation. Outer connections were manufactured using Cu ribbon plated with Ag layer and sintered to DBC by Ag micro particle. The authors investigated the long-term stability of electrical parameters of SiC diodes assembled in ceramic package at temperature 350°C. Findings – The authors have shown that Schottky and PiN SiC diodes assembled with different technologies and materials in ceramic package keep their I-V characteristics unchanged during ageing at 350°C for 400 h. Originality/value – The SiC diodes assembled into ceramic package with Al/Ni or Au-Au inner electrical connection systems and outer connections system based on Ag microparticles sintering process of Cu/Ag ribbon to DBC substrate can work reliably in temperature range up to 350°C.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


2018 ◽  
Vol 2018 (HiTEC) ◽  
pp. 000148-000153
Author(s):  
Kenneth P. Dowhower

Abstract The electrical interconnect is an essential component of most electrical system configurations. The ability of the interconnect interface to reliably transmit power and / or data throughout the system is critical to its overall performance. Degradation of the mechanical or electrical properties of the interface can reduce the system performance or in severe cases, make it inoperable. There are several factors which can inhibit the performance of the interconnect, one of most severe is long term exposure to elevated temperatures. This effect can also be accelerated when combined with other severe environmental conditions such as high vibration and physical shock, which are often found in down hole oil and gas well drilling applications. This type of exposure can significantly degrade the essential properties of a reliable electrical interface such as contact resistance, mechanical stability, and electrical isolation. This paper will present options for design features and material properties that can be incorporated into an interconnect design that will mitigate these adverse effects. Specifically, this paper addresses the material properties of the contact interface and its surface treatment, the mechanical and electrical properties of the insulating material, the robustness of the mating features and the contact retention system. Two key features of the contact interface that are discussed are the stability of its electrical resistance and the robustness of its mechanical retention. Long term exposure to high temperatures typically induces stress relaxation in the compliant members of the contact interface that are required to produce a stable, low resistance interface, while allowing for a high level of mate / unmate durability. Stress relaxation can also reduce the mechanical stability of the contact interface where metal or plastic retention features are utilized. In the case of retention through epoxy bonding, imparting thermal stress at the bonding surface can result in loss of adhesion and / or retention. The surface treatment of the contact interface has also been shown to be a contributing factor in its electrical stability in high temperature applications. Typically, the interface is plated with a hard gold over nickel finish, which provides a noble interface that is corrosion resistant, but with the hardness required to withstand many mate / unmate cycles. A small percentage of nickel or cobalt are typically alloyed with the gold to produce the required hardness. In most applications, it has minimal impact on the overall resistance of the contact interface. In high temperature applications, however, it can tend to diffuse through the gold to the contact interface. Since these materials have a higher resistivity, they can negatively affect the resistance of the interface. The impact of this effect is reviewed in this paper. Finally, results of the evaluations on high temperature insulating materials and bonding epoxies are presented in this paper. The mechanical and dielectric stability of the insulating materials and the adhesion properties of the epoxy used for contact retention were the primary concerns for their evaluation. The verification tests that included at temperature exposure were conducted at +260°C to simulate extreme use cases for most down hole applications.


Author(s):  
Pradeep Lall ◽  
Sungmo Jung

Abstract Electronics in automotive underhood environments may be subjected to high temperature in the range of 125–200°C. Transition to electric vehicles has resulted in need for electronics capable of operation under high voltage bias. Automotive electronics has simultaneously transitioned to copper wire-bond from gold wire-bond for first-level interconnections. Copper has a smaller process window and a higher propensity for corrosion in comparison with gold wire bonds. There is scarce information on the reliability of copper wire bonds in presence of high voltage bias under operation at high temperature. In this paper, a multiphysics model for micro galvanic corrosion in the presence of chlorine is introduced. The diffusion cell is used to measure the diffusivity of chlorine in different pH values and different temperatures. Diffusivity measurements are incorporated into the 3D ionic transport model to study the effect of different environmental factors on the transport rate of chlorine. The tafel parameters for copper, aluminum and intermetallics have been extracted through measurements of the polarization curves. The multiple physics of ionic transport in presence of concentration gradient, potential gradient is coupled with the galvanic corrosion.


1972 ◽  
Vol 45 (1) ◽  
pp. 49-59 ◽  
Author(s):  
R. A. Gregg

Abstract The resinous impregnant in glass yarn influences the stability of the yarn. Some glass yarns suffer tensile degradation on storage and/or vulcanization at high humidities. One type of glass yarn was exposed in atmospheres over the range 0–88% relative humidity at 73° F for times up to 400 days. Tensile losses of 30% or more can occur on storage of the glass yarn at the humidities in the upper end of the range. This loss is permanent as even vigorous drying at high temperatures will not restore the tensile. Under dry conditions the yarn has excellent storage stability. Furthermore, after vulcanization even into thin composites, the glass yarn shows only a small permanent loss of tensile under moisture conditions that would seriously degrade the yarn in a package. An increased degree of vulcanization of the rubber slightly increases the tensile strength of the composite. In addition to its permanent degradative action in long-term exposure, water has a phenomenological effect of reducing glass composite tensile by its presence. A tensile sensitivity to moisture index is suggested and used to characterize the glass yarn. This tensile loss is recoverable by drying but some of the water is bound very tightly. Thin composites do not give up all of the water in 150 days over Drierite® as shown by the fact that more vigorous high temperature drying leads to a further increase in tensile strength. Tensile strength at 300° F is about 25% lower than at 73° F at any moisture content. Higher moisture contents lead to lower absolute tensiles. Tensile values are detailed for conditions that might exist during cure or in a product running at a high temperature. The high temperature incurred tensile reductions from a standard tensile are significant and should be considered in designing products. The detailed observations apply only to this particular glass yarn but the principles and methods are applicable in the evaluation or development of any glass yarn.


2017 ◽  
Vol 41 (16) ◽  
pp. 7844-7848 ◽  
Author(s):  
Adela Benchea ◽  
Benjamin Siu ◽  
Mohammad Soltani ◽  
JaMichael H. McCants ◽  
E. Alan Salter ◽  
...  

The stability of fourteen different PPN+ salts has been studied in 96 hour tests, in air, at temperatures of 200 °C, 250 °C, and 300 °C.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Raluca Pflumm ◽  
Michael Schütze

ABSTRACTIncreasing demands on technical components for high-temperature applications (e.g. tur-bine blades) promote new developments not only in the field of alloy design, but also in surface engineering. This paper shows that it is possible to structure the surface of intermetallic titanium aluminides in-situ by locally controlled oxidation of the material due to selective doping with fluorine. The aim is to reproduce a shark-skin pattern (parallel riblets with valleys in between) in order to improve the surface aerodynamics. Riblets with widths in the single digit μm range have been generated. The nucleation process, the aspect ratio and the stability of the generated micro-structures are discussed as a function of the substrate composition and the oxidation conditions.


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000082-000086
Author(s):  
Jeff Watson ◽  
Gustavo Castro

This paper discusses a very low noise instrumentation amplifier designed specifically for high temperature applications. The device uses a proprietary silicon-on-insulator process that minimizes parasitic leakage currents at elevated temperature. Variance in device parameters are managed to maintain high performance over a wide temperature range. Layout and packaging considerations that would affect long term reliability are addressed. The amplifier is well characterized above 200°C and attains much higher performance than amplifiers not optimized for high temperature operation. Comprehensive reliability testing over temperature has been completed.


Sign in / Sign up

Export Citation Format

Share Document