Development of a low-cost packaging for MEMS pressure sensors

Author(s):  
Diego Conte Ayala Penalver ◽  
Humber Furlan ◽  
Mariana Amorim Fraga
2015 ◽  
Vol 28 (1) ◽  
pp. 123-131 ◽  
Author(s):  
Milos Frantlovic ◽  
Ivana Jokic ◽  
Zarko Lazic ◽  
Branko Vukelic ◽  
Marko Obradov ◽  
...  

Temperature and pressure are the most common parameters to be measured and monitored not only in industrial processes but in many other fields from vehicles and healthcare to household appliances. Silicon microelectromechanical (MEMS) piezoresistive pressure sensors are the first and the most successful MEMS sensors, offering high sensitivity, solid-state reliability and small dimensions at a low cost achieved by mass production. The inherent temperature dependence of the output signal of such sensors adversely affects their pressure measurement performance, necessitating the use of correction methods in a majority of cases. However, the same effect can be utilized for temperature measurement, thus enabling new sensor applications. In this paper we perform characterization of MEMS piezoresistive pressure sensors for temperature measurement, propose a sensor correction method, and demonstrate that the measurement error as low as ? 0.3?C can be achieved.


Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56 ◽  
Author(s):  
Peishuai Song ◽  
Zhe Ma ◽  
Jing Ma ◽  
Liangliang Yang ◽  
Jiangtao Wei ◽  
...  

Miniature Microelectromechanical Systems (MEMS) pressure sensors possess various merits, such as low power consumption, being lightweight, having a small volume, accurate measurement in a space-limited region, low cost, little influence on the objects being detected. Accurate blood pressure has been frequently required for medical diagnosis. Miniature pressure sensors could directly measure the blood pressure and fluctuation in blood vessels with an inner diameter from 200 to 1000 μm. Glaucoma is a group of eye diseases usually resulting from abnormal intraocular pressure. The implantable pressure sensor for real-time inspection would keep the disease from worsening; meanwhile, these small devices could alleviate the discomfort of patients. In addition to medical applications, miniature pressure sensors have also been used in the aerospace, industrial, and consumer electronics fields. To clearly illustrate the “miniature size”, this paper focuses on miniature pressure sensors with an overall size of less than 2 mm × 2 mm or a pressure sensitive diaphragm area of less than 1 mm × 1 mm. In this paper, firstly, the working principles of several types of pressure sensors are briefly introduced. Secondly, the miniaturization with the development of the semiconductor processing technology is discussed. Thirdly, the sizes, performances, manufacturing processes, structures, and materials of small pressure sensors used in the different fields are explained in detail, especially in the medical field. Fourthly, problems encountered in the miniaturization of miniature pressure sensors are analyzed and possible solutions proposed. Finally, the probable development directions of miniature pressure sensors in the future are discussed.


Author(s):  
Christian Raab ◽  
Kai Rohde-Brandenburger

AbstractThe determination of structural loads plays an important role in the certification process of new aircraft. Strain gauges are usually used to measure and monitor the structural loads encountered during the flight test program. However, a time-consuming wiring and calibration process is required to determine the forces and moments from the measured strains. Sensors based on MEMS provide an alternative way to determine loads from the measured aerodynamic pressure distribution around the structural component. Flight tests were performed with a research glider aircraft to investigate the flight loads determined with the strain based and the pressure based measurement technology. A wing glove equipped with 64 MEMS pressure sensors was developed for measuring the pressure distribution around a selected wing section. The wing shear force determined with both load determination methods were compared to each other. Several flight maneuvers with varying loads were performed during the flight test program. This paper concentrates on the evaluation of dynamic flight maneuvers including Stalls and Pull-Up Push-Over maneuvers. The effects of changes in the aerodynamic flow characteristics during the maneuver could be detected directly with the pressure sensors based on MEMS. Time histories of the measured pressure distributions and the wing shear forces are presented and discussed.


Nanoscale ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 2779-2786 ◽  
Author(s):  
Jing Li ◽  
Santiago Orrego ◽  
Junjie Pan ◽  
Peisheng He ◽  
Sung Hoon Kang

We report a facile sacrificial casting–etching method to synthesize nanoporous carbon nanotube/polymer composites for ultra-sensitive and low-cost piezoresistive pressure sensors.


IoT ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 17-32
Author(s):  
Philip Knight ◽  
Cai Bird ◽  
Alex Sinclair ◽  
Jonathan Higham ◽  
Andy Plater

A low-cost “Internet of Things” (IoT) tide gauge network was developed to provide real-time and “delayed mode” sea-level data to support monitoring of spatial and temporal coastal morphological changes. It is based on the Arduino Sigfox MKR 1200 micro-controller platform with a Measurement Specialties pressure sensor (MS5837). Experiments at two sites colocated with established tide gauges show that these inexpensive pressure sensors can make accurate sea-level measurements. While these pressure sensors are capable of ~1 cm accuracy, as with other comparable gauges, the effect of significant wave activity can distort the overall sea-level measurements. Various off-the-shelf hardware and software configurations were tested to provide complementary data as part of a localized network and to overcome operational constraints, such as lack of suitable infrastructure for mounting the tide gauges and for exposed beach locations.


2000 ◽  
Author(s):  
Mark C. Sellnau ◽  
Frederic A. Matekunas ◽  
Paul A. Battiston ◽  
Chen-Fang Chang ◽  
David R. Lancaster

Sign in / Sign up

Export Citation Format

Share Document