Fabrication and characteristics of flexible, lightweight, and low-cost pressure sensors based on PVA/SiO2/SiC nanostructures

Author(s):  
Ahmed Hashim
Keyword(s):  
Low Cost ◽  
Nanoscale ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 2779-2786 ◽  
Author(s):  
Jing Li ◽  
Santiago Orrego ◽  
Junjie Pan ◽  
Peisheng He ◽  
Sung Hoon Kang

We report a facile sacrificial casting–etching method to synthesize nanoporous carbon nanotube/polymer composites for ultra-sensitive and low-cost piezoresistive pressure sensors.


IoT ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 17-32
Author(s):  
Philip Knight ◽  
Cai Bird ◽  
Alex Sinclair ◽  
Jonathan Higham ◽  
Andy Plater

A low-cost “Internet of Things” (IoT) tide gauge network was developed to provide real-time and “delayed mode” sea-level data to support monitoring of spatial and temporal coastal morphological changes. It is based on the Arduino Sigfox MKR 1200 micro-controller platform with a Measurement Specialties pressure sensor (MS5837). Experiments at two sites colocated with established tide gauges show that these inexpensive pressure sensors can make accurate sea-level measurements. While these pressure sensors are capable of ~1 cm accuracy, as with other comparable gauges, the effect of significant wave activity can distort the overall sea-level measurements. Various off-the-shelf hardware and software configurations were tested to provide complementary data as part of a localized network and to overcome operational constraints, such as lack of suitable infrastructure for mounting the tide gauges and for exposed beach locations.


2000 ◽  
Author(s):  
Mark C. Sellnau ◽  
Frederic A. Matekunas ◽  
Paul A. Battiston ◽  
Chen-Fang Chang ◽  
David R. Lancaster

Author(s):  
Jiang Zhao ◽  
Jiahao Gui ◽  
Jinsong Luo ◽  
Jing Gao ◽  
Caidong Zheng ◽  
...  

Abstract Graphene-based pressure sensors have received extensive attention in wearable devices. However, reliable, low-cost, and large-scale preparation of structurally stable graphene electrodes for flexible pressure sensors is still a challenge. Herein, for the first time, laser-induced graphene (LIG) powder are prepared into screen printing ink, and shape-controllable LIG patterned electrodes can be obtained on various substrates using a facile screen printing process, and a novel asymmetric pressure sensor composed of the resulting screen-printed LIG electrodes has been developed. Benefit from the 3D porous structure of LIG, the as-prepared flexible LIG screen-printed asymmetric pressure sensor has super sensing properties with a high sensitivity of 1.86 kPa−1, low detection limit of about 3.4 Pa, short response time, and long cycle durability. Such excellent sensing performances give our flexible asymmetric LIG screen-printed pressure sensor the ability to realize real-time detection of tiny body physiological movements (such as wrist pulse and pronunciation action). Besides, the integrated sensor array has a multi-touch function. This work could stimulate an appropriate approach to designing shape-controllable LIG screen-printed patterned electrodes on various flexible substrates to adapt the specific needs of fulfilling compatibility and modular integration for potential application prospects in wearable electronics.


Sensor Review ◽  
2016 ◽  
Vol 36 (2) ◽  
pp. 158-168 ◽  
Author(s):  
Drew van der Riet ◽  
Riaan Stopforth ◽  
Glen Bright ◽  
Olaf Diegel

Purpose This paper aims to explore the electronic design of the Touch Hand: a low-cost electrically powered prosthetic hand. The hand is equipped with an array of sensors allowing for position control and haptic sensation. Pressure sensors are used on the fingertips to detect grip force. A temperature sensor placed in the fingertip is used to measure the contact temperature of objects. Investigations are made into the use of cantilever vibration sensors to detect surface texture and object slippage. The hand is capable of performing a lateral grip of 3.7 N, a power grip of 19.5 N and to passively hold a weight of up to 8 kg with a hook grip. The hand is also tested on an amputee and used to perform basic tasks. The amputee took 30 min to learn how to operate the hands basic gripping functions. Design/methodology/approach Problems of previous prosthetic hands were investigated, followed by ways to improve or have similar capabilities, yet keeping in mind to reduce the price. The hand was then designed, simulated, developed and then tested. The hand was then displayed to public and tested with an amputee. Findings The Touch Hand’s capabilities with the usage of the low-cost materials, components and sensory system was obtained in the tests that were conducted. The results are shown in this paper to identify the appropriateness of the sensors for a usage while the costs are reduced. Furthermore, models were developed from the results obtained to take into account factors such as the non-slip material. Research limitations/implications The research was restricted to a US$1,000 budget to allow the availability of a low-cost prosthetic hand. Practical implications The Touch Hand had to have the ability to supply the amputee with haptic feedback while allowing the basic grasping of objects. The commercial value is the availability of an affordable prosthetic hand that can be used by amputees in Africa and other Lower-Income countries, yet allowing a more advanced control system compared to the pure mechanical systems currently available. Social implications The Touch Hand has the ability to give amputees affected in war situations the ability to grasp objects in a more affordable manner compared to the current available options. Feedback from amputees about the current features of the Touch Hand was very positive and it proves to be a way to improve society in Lower-Income countries in the near future. A sponsorship program is being developed to assist amputees with the costs of the Touch Hand. Originality/value The contributions of this research is a low-cost prototype system than can be commercialized to allow amputees in the Lower-Income countries to have the ability of a prosthetic hand. A sensory system in the hand is also explained which other low-cost prosthetic hands do not have, which includes temperature, force and vibration. Models of the sensors used that are developed and calibrated to the design of the hand are also described.


2018 ◽  
Vol 85 (7-8) ◽  
pp. 504-514
Author(s):  
Christoph Beisteiner ◽  
Bernhard G. Zagar

Abstract Inkjet-printers from the company Epson and others can be used to fabricate low-cost sensors on coated PET films. By using nanoparticle-based dispersions resistive temperature dependent sensors, strain gauges, thermocouples and pressure sensors can be fabricated. For these purposes the gauge factors, Seebeck coefficients and temperature coefficients of resistance for Ag, Carbon Black and PEDOT:PSS dispersions on Mitsubishi® and Pelikan® PET substrates are characterized. Furthermore, piezoresistive effects in transverse and longitudinal strain directions are discussed. Additionally, a printed sensor system for measuring strains within a surface is presented. Finally, an injection-moulding process and a lamination process are used to improve the mechanical scratching of those sensors.


2013 ◽  
Vol 53 (1) ◽  
pp. 285
Author(s):  
Emile Barrett ◽  
Imran Abbasy ◽  
Chii-Rong Wu ◽  
Zhenjiang You ◽  
Pavel Bedrikovetsky

Estimation of rate profile along the well is important information for reservoir characterisation since it allows distinction of the production rates from different layers. The temperature and pressure sensors in a well are small and inexpensive; while flow meters are cumbersome and expensive, and affect the flow in the well. The method presented in this peer-reviewed paper shows its significance in predicting the gas rate from temperature and pressure data. A mathematical model for pressure and temperature distributions along a gas well has been developed. Temperature and pressure profiles from nine well intervals in field A (Cooper Basin, Australia) have been matched with the mathematical model to determine the flow rates from different layers in the well. The presented model considers the variables as functions of thermal properties at each location, which is more accurate and robust than previous methods. The results of tuning the mathematical model to the field data show good agreement with the model prediction. Simple and robust explicit formulae are derived for the effective estimation of flow rate and thermal conductivity in gas wells. The proposed approach has been applied to determine the well gas rate and formation thermal conductivity from the acquired well pressure and temperature data in field A. It allows for recommending well stimulation of layers with low production rates.


Sign in / Sign up

Export Citation Format

Share Document