Text sentiment polarity classification based on TextCNN-SVM combination model

Author(s):  
Xiangling Dong ◽  
Rui Hu ◽  
Yaowei Li ◽  
Min Liu ◽  
Yao Xiao
2014 ◽  
Author(s):  
David Pinto ◽  
Darnes Vilariño ◽  
Saul Leon ◽  
Miguel Jasso ◽  
Cupertino Lucero

Author(s):  
Farrikh Alzami ◽  
Erika Devi Udayanti ◽  
Dwi Puji Prabowo ◽  
Rama Aria Megantara

Sentiment analysis in terms of polarity classification is very important in everyday life, with the existence of polarity, many people can find out whether the respected document has positive or negative sentiment so that it can help in choosing and making decisions. Sentiment analysis usually done manually. Therefore, an automatic sentiment analysis classification process is needed. However, it is rare to find studies that discuss extraction features and which learning models are suitable for unstructured sentiment analysis types with the Amazon food review case. This research explores some extraction features such as Word Bags, TF-IDF, Word2Vector, as well as a combination of TF-IDF and Word2Vector with several machine learning models such as Random Forest, SVM, KNN and Naïve Bayes to find out a combination of feature extraction and learning models that can help add variety to the analysis of polarity sentiments. By assisting with document preparation such as html tags and punctuation and special characters, using snowball stemming, TF-IDF results obtained with SVM are suitable for obtaining a polarity classification in unstructured sentiment analysis for the case of Amazon food review with a performance result of 87,3 percent.


2021 ◽  
Vol 13 (9) ◽  
pp. 4896
Author(s):  
Jianguo Zhou ◽  
Dongfeng Chen

Effective carbon pricing policies have become an effective tool for many countries to encourage emission reduction. An accurate carbon price prediction model is helpful for the implementation of energy conservation and emission reduction policies and the decision-making of governments and investors. However, it is difficult for a single prediction model to achieve high prediction accuracy because of the high complexity of the carbon price series. Many studies have proved the nonlinear characteristics of carbon trading prices, but there are very few studies on the chaotic nature of carbon price series. As a consequence, this paper proposes an innovative hybrid model for carbon price prediction. A decomposition-reconstruction-prediction-integration scheme is designed to predict carbon prices. Firstly, several intrinsic mode functions (IMFs) and one residue were obtained from the raw data decomposed by ICEEMDAN. Next, the decomposed subsection is reconstructed into a new sequence according to the calculation results by the Lempel-Ziv complexity algorithm. Then, considering the chaotic characteristics of sequence, the input variables of the models are determined through the phase space reconstruction (PSR) algorithm combined with the partial autocorrelation function (PACF). Finally, the Sparrow search algorithm (SSA) is introduced to optimize the extreme learning machine (ELM) model, which is applied in the carbon price prediction for the purpose of verifying the validity of the proposed combination model, which is applied to the pilots of Hubei, Beijing, and Guangdong. The empirical results show that the combination model outperformed the 13 other models in predicting accuracy, speed, and stability. The decomposition-reconstruction-prediction-integration strategy is a method for predicting the carbon price efficiently.


2021 ◽  
Vol 13 (15) ◽  
pp. 2972
Author(s):  
Wei Xu ◽  
Wen-Bin Shen ◽  
Cheng-Hui Cai ◽  
Li-Hong Li ◽  
Lei Wang ◽  
...  

The present Global Navigation Satellite System (GNSS) can provide at least double-frequency observations, and especially the Galileo Navigation Satellite System (Galileo) can provide five-frequency observations for all constellation satellites. In this contribution, precision point positioning (PPP) models with Galileo E1, E5a, E5b, E5 and E6 frequency observations are established, including a dual-frequency (DF) ionospheric-free (IF) combination model, triple-frequency (TF) IF combination model, quad-frequency (QF) IF combination model, four five-frequency (FF) IF com-bination models and an FF uncombined (UC) model. The observation data of five stations for seven days are selected from the multi-GNSS experiment (MGEX) network, forming four time-frequency links ranging from 454.6 km to 5991.2 km. The positioning and time-frequency transfer performances of Galileo multi-frequency PPP are compared and evaluated using GBM (which denotes precise satellite orbit and clock bias products provided by Geo Forschung Zentrum (GFZ)), WUM (which denotes precise satellite orbit and clock bias products provided by Wuhan University (WHU)) and GRG (which denotes precise satellite orbit and clock bias products provided by the Centre National d’Etudes Spatiales (CNES)) precise products. The results show that the performances of the DF, TF, QF and FF PPP models are basically the same, the frequency stabilities of most links can reach sub10−16 level at 120,000 s, and the average three-dimensional (3D) root mean square (RMS) of position and average frequency stability (120,000 s) can reach 1.82 cm and 1.18 × 10−15, respectively. The differences of 3D RMS among all models are within 0.17 cm, and the differences in frequency stabilities (in 120,000 s) among all models are within 0.08 × 10−15. Using the GRG precise product, the solution performance is slightly better than that of the GBM or WUM precise product, the average 3D RMS values obtained using the WUM and GRG precise products are 1.85 cm and 1.77 cm, respectively, and the average frequency stabilities at 120,000 s can reach 1.13 × 10−15 and 1.06 × 10−15, respectively.


Author(s):  
Dang Van Thin ◽  
Ngan Luu-Thuy Nguyen ◽  
Tri Minh Truong ◽  
Lac Si Le ◽  
Duy Tin Vo

Aspect-based sentiment analysis has been studied in both research and industrial communities over recent years. For the low-resource languages, the standard benchmark corpora play an important role in the development of methods. In this article, we introduce two benchmark corpora with the largest sizes at sentence-level for two tasks: Aspect Category Detection and Aspect Polarity Classification in Vietnamese. Our corpora are annotated with high inter-annotator agreements for the restaurant and hotel domains. The release of our corpora would push forward the low-resource language processing community. In addition, we deploy and compare the effectiveness of supervised learning methods with a single and multi-task approach based on deep learning architectures. Experimental results on our corpora show that the multi-task approach based on BERT architecture outperforms the neural network architectures and the single approach. Our corpora and source code are published on this footnoted site. 1


Author(s):  
Mohammed N. Al-Kabi ◽  
Heider A. Wahsheh ◽  
Izzat M. Alsmadi

Sentiment Analysis/Opinion Mining is associated with social media and usually aims to automatically identify the polarities of different points of views of the users of the social media about different aspects of life. The polarity of a sentiment reflects the point view of its author about a certain issue. This study aims to present a new method to identify the polarity of Arabic reviews and comments whether they are written in Modern Standard Arabic (MSA), or one of the Arabic Dialects, and/or include Emoticons. The proposed method is called Detection of Arabic Sentiment Analysis Polarity (DASAP). A modest dataset of Arabic comments, posts, and reviews is collected from Online social network websites (i.e. Facebook, Blogs, YouTube, and Twitter). This dataset is used to evaluate the effectiveness of the proposed method (DASAP). Receiver Operating Characteristic (ROC) prediction quality measurements are used to evaluate the effectiveness of DASAP based on the collected dataset.


Sign in / Sign up

Export Citation Format

Share Document