Opportunistic routing in tactical networks

Author(s):  
David Kidston ◽  
Minghui Shi
2013 ◽  
Vol 33 (12) ◽  
pp. 3394-3397
Author(s):  
Dan XU ◽  
Xiaojiang CHEN ◽  
Junjie HUANG ◽  
Xiaoyan YIN ◽  
Dingyi FANG

Author(s):  
Premkumar Chithaluru ◽  
Rajeev Tiwari ◽  
Kamal Kumar

Background: Energy Efficient wireless routing has been an area of research particularly to mitigate challenges surrounding performance in category of Wireless Networks. Objectives: The Opportunistic Routing (OR) technique was explored in recent times and exhibits benefits over many existing protocols and can significantly reduce energy consumption during data communication with very limited compromise on performance. Methods : Using broadcasting nature of the wireless medium, OR practices to discourse two foremost issues of variable link quality and unpredictable node agility in constrained WSNs. OR has a potential to reduce delay in order to increase the consistency of data delivery in network. Results : Various OR based routing protocols have shown varying performances. In this paper, a detailed conceptual and experimental analysis is carried out on different protocols that uses OR technique for providing more clear and definitive view on performance parameters like Message Success Rate, Packet Delivery Ratio and Energy Consumption.


2021 ◽  
pp. 102560
Author(s):  
Xiao Pang ◽  
Min Liu ◽  
Zhongcheng Li ◽  
Bo Gao ◽  
Xiaobing Guo

2021 ◽  
pp. 1-1
Author(s):  
Johannes F. Loevenich ◽  
Roberto Rigolin F. Lopes ◽  
Paulo H. Rettore ◽  
Sharath M. Eswarappa ◽  
Peter Sevenich

Author(s):  
Yiftach Richter ◽  
Itsik Bergel

AbstractIn this paper we consider opportunistic routing in multiple-input–multiple-output (MIMO) random wireless ad-hoc networks (WANETs). Our analysis uses a proper model of the physical layer together with an abstraction of the higher communication layers. We assume that the nodes are distributed according to a Poisson point process and consider a routing scheme that opportunistically selects the next relay and the number of spatially multiplexed data streams. The routing decisions are based on geographic locations, the channel gains of the neighbor nodes, and the statistical characterization of all other nodes. Unlike the single antenna case, the optimal routing scheme cannot be explicitly expressed. Hence, we propose a smart-routing scheme for MIMO that adapts the number of data streams per user to the channel conditions. The numerical results demonstrate that this scheme outperforms all previously published schemes for this scenario. The findings highlight the importance of channel state information for efficient routing, and the need for an adaptive selection of the number of data streams at each transmitter.


Sign in / Sign up

Export Citation Format

Share Document