Partial Cutting Method of the 3D Geometric Model

Author(s):  
Wen-Yuan Hao ◽  
Jun He ◽  
Yi Qi
2015 ◽  
Vol 741 ◽  
pp. 133-137
Author(s):  
Xian Zhao Jia ◽  
Yong Fei Wang

To ensure wheel body of the hoisting sheave strength and stability condition. For the purpose of wheel body lightweighting. There are two schemes to reduce body weight.Reduce the spokes at the same time increase the ring stiffened plate, and reduce the spokes at the same time change the spokes width and thickness.The wheel body was established based on Pro/E 3D geometric model. Import the mesh in the Workbench of ANSYS software for finite element model. Statics analysis to select the optimized scheme. Establish a hoisting sheave wheel body under the actual working condition of widening the width - deformation - wheel weight relational table. Analysis to lightweight at the same time ensure that stiffness of wheel,then it can obtaine the optimal result.


2014 ◽  
Vol 644-650 ◽  
pp. 455-458
Author(s):  
Yao Ye ◽  
Yong Hai Wu

Frame has important effects on the performance of the whole of heavy semi-trailer. A heavy semi-trailer frame is analyzed and researched on in the finite-element way in this article. The frame of 3D geometric model is established by using Pro/E. And it was imported into the Hypermesh to establish frame finite element model. Frame are calculated by using ANSYS solver in bending condition, emergency braking conditions and rapid turn conditions of stress and deformation conditions. The computational tools and methods we used provide the new type of frame and development with a reference method to refer to in this paper.


2014 ◽  
Vol 635-637 ◽  
pp. 532-536
Author(s):  
Pei Shu ◽  
Hong Xin Zhang ◽  
Ru Qin Xiao ◽  
Jin Zhu Shi

For the bush-burning problem in the course of the engine operation. Taking a certain kind of engine as reference, build a 3D geometric model of the engine-oil flow field in the ideal stable conditions with GAMBIT and conduct a simulation of it with FLUENT. It reveals that we can have an intuitive understanding of the flow state and pressure distribution of the engine-oil inside the clearance between the crankshaft main journal and crankshaft bearing as well as the rod journal and rod bearing which provides basis for a further refining of bearing lubrication system, improving the lubrication method and enhancing the efficiency of the lubrication.


2010 ◽  
Vol 29-32 ◽  
pp. 1608-1614 ◽  
Author(s):  
Lei Li ◽  
Xian Ying Feng ◽  
Zi Ping Zhang ◽  
Xing Chang Han ◽  
Ya Qing Song

This paper presents a new type of globoidal indexing cam mechanism with steel ball. The characteristic of this mechanism has double circular arc section for cam raceway. Due to this kind of cam raceway section the mechanism can realize approximate rolling transmission. According to rotary transform tensor theory profile surface equation of globoidal cam is established. Meshing equation is built through meshing theory, and profile surface equation is determined by meshing equation. Based on profile surface equation 3D geometric model for globoidal cam is established. MATLAB software is used to calculate three-dimensional coordinate points, these coordinate points are imported into Pro/E software, and finally 3D model for globoidal cam is established by three-dimensional modeling function of Pro/E software. Pressure angle equation of globoidal cam is also established. On the condition that the other parameters remain unchanged the variation law of values of pressure angle depended on cam angle and indexing plate rotary radius is obtained respectively.


2012 ◽  
Vol 298 ◽  
pp. 116-121 ◽  
Author(s):  
Tobias Siebert ◽  
Michael Günther ◽  
Reinhard Blickhan

2012 ◽  
Vol 562-564 ◽  
pp. 1487-1491
Author(s):  
Mei Chen ◽  
Fei Zheng ◽  
Na Li

The mechanical errors in a mobile waveguide slot array antenna will finally influence the electromagnetic performances. Hence it is necessary to understand the relationship between them, which requires mechanical-electromagnetic analyses. The 3D models in both mechanical analysis and electromagnetic analysis are greatly different. They need a precise connection and transformation. The paper proposes an effective 3D model transformation method. From 3D geometric model to 3D mechanical model, and then to 3D electromagnetic model, the precise connection and transformation can be finished. It can be used to increase the analysis precision of a complex waveguide slot array antenna.


Author(s):  
Herman Szűcs

Porous materials can be found in numerous areas of life (e. g., applied science, material science), however, the simulation of the fluid flow and transport phenomena through porous media is a significant challenge nowadays. Numerical simulations can help to analyze and understand physical processes and different phenomena in the porous structure, as well as to determine certain parameters that are difficult or impossible to measure directly or can only be determined by expensive and time-consuming experiments. The basic condition for the numerical simulations is the 3D geometric model of the porous material sample, which is the input parameter of the simulation. For this reason, geometry reconstruction is highly critical for pore-scale analysis. This paper introduces a complex process for the preparation of the microstructure's geometry in connection with a coupled FEM-CFD two-way fluid-structure interaction simulation. Micro-CT has been successfully applied to reconstruct both the fluid and solid phases of the used porous material.


Sign in / Sign up

Export Citation Format

Share Document