Simple Quantum Computing with Quantum Bits Decoupled in Time and Space Implemented in Silicon and Coupled Back as Analog Signals and Waves Processed by Analog Computer

Author(s):  
Nagi Mekhiel
2005 ◽  
Vol 03 (01) ◽  
pp. 281-285 ◽  
Author(s):  
JOSÉ M. FERNANDEZ ◽  
TAL MOR ◽  
YOSSI WEINSTEIN

Algorithmic cooling is a method that uses novel data compression techniques and simple quantum computing devices to improve NMR spectroscopy, and to offer scalable NMR quantum computers. The algorithm recursively employs two steps. A reversible entropy compression of computation quantum-bits (qubits) of the system and an irreversible heat transfer from the system to the environment through a set of reset qubits that reach thermal relaxation rapidly. Is it possible to experimentally demonstrate algorithmic cooling using existing technology? To allow experimental algorithmic cooling, the thermalization time of the reset qubits must be much shorter than the thermalization time of the computation qubits. However, such high thermalization-times ratios have yet to be reported. We investigate here the effect of a paramagnetic salt on the thermalization-times ratio of computation qubits (carbons) and a reset qubit (hydrogen). We show that the thermalization-times ratio is improved by approximately three-fold. Based on this result, an experimental demonstration of algorithmic cooling by thermalization and magnetic ions has been performed by the authors and collaborators.


Author(s):  
Haodong Bian ◽  
Jianqiang Huang ◽  
Jiahao Tang ◽  
Runting Dong ◽  
Li Wu ◽  
...  

Author(s):  
Ahmad Smaili ◽  
Mazen Hassanieh ◽  
Bachir Chaaya ◽  
Fawzan Al Fares

A modified real coded quantum-inspired evolution algorithm (MRQIEA) is herein presented for optimum synthesis of planar rigid body mechanisms (RBMs). The MRQIEA employs elements of quantum computing such as quantum bits, registers, and quantum gates, neighborhood search engine, and gradient search to form a random search algorithm for solution optimization of a wide class of problems. A brief overview of the quantum computing elements and their adaptation to the optimization algorithm is first presented. The algorithm is then adapted to the synthesis problem of RBMs. Finally, the algorithm is demonstrated and compared to other search methods by way of three examples, including two benchmark examples that have been used in the literature to assess the performance of other optimization schemes.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 273
Author(s):  
Maurice Kibler

The aim of the present paper is twofold. First, to give the main ideas behind quantum computing and quantum information, a field based on quantum-mechanical phenomena. Therefore, a short review is devoted to (i) quantum bits or qubits (and more generally qudits), the analogues of the usual bits 0 and 1 of the classical information theory, and to (ii) two characteristics of quantum mechanics, namely, linearity, which manifests itself through the superposition of qubits and the action of unitary operators on qubits, and entanglement of certain multi-qubit states, a resource that is specific to quantum mechanics. A, second, focus is on some mathematical problems related to the so-called mutually unbiased bases used in quantum computing and quantum information processing. In this direction, the construction of mutually unbiased bases is presented via two distinct approaches: one based on the group SU(2) and the other on Galois fields and Galois rings.


2018 ◽  
Vol 18 (1&2) ◽  
pp. 18-50 ◽  
Author(s):  
Chris Cade ◽  
Ashley Montanaro ◽  
Aleksandrs Belovs

We study space and time-efficient quantum algorithms for two graph problems – deciding whether an n-vertex graph is a forest, and whether it is bipartite. Via a reduction to the s-t connectivity problem, we describe quantum algorithms for deciding both properties in O˜(n 3/2 ) time whilst using O(log n) classical and quantum bits of storage in the adjacency matrix model. We then present quantum algorithms for deciding the two properties in the adjacency array model, which run in time O˜(n √ dm) and also require O(log n) space, where dm is the maximum degree of any vertex in the input graph.


Author(s):  
Sina Khorasani

In this letter, it is proposed that cryogenic quantum bits could operate based on the nonlinearity due to the quantum capacitance of two-dimensional Dirac materials, and in particular graphene. The anharmonicity of a typical superconducting quantum bit is calculated and the sensitivity of quantum bit frequency and anharmonicty with respect to temperature are found. Reasonable estimates reveal that a careful fabrication process could reveal the expected properties, thus putting the context of quantum computing hardware into new perspectives.


2020 ◽  
Author(s):  
Alberto Delgado

Research in quantum computing hardware has shown that quantum bits can be implemented with superconducting circuits, these qubits could be used in other applications such as quantum devices for electronic systems. In this paper a nonlinear parameterised two qubits quantum device is presented, the current - voltage characteristic of this element is similar to an adjustable memristor when its parameters are changed.<br>


2019 ◽  
Vol 12 (3) ◽  
pp. 104
Author(s):  
Casper van der Kerk ◽  
Attila Csala ◽  
Aeilko H. Zwinderman

Quantum computing is a field that aims to exploit the principles of superposition and entanglement to perform computations. By using quantum bits (qubits) a quantum computer is able to perform certain tasks more efficiently when compared to classical computers. While applied quantum computing is still in its early stages, quantum algorithms on simulated quantum computers have already been applied to certain problems in epidemics modeling and image processing. Furthermore, companies like Google and IBM continue to develop new quantum computers with an increasing number of qubits. While much progress has been made in the recent years, the so called &rdquo;quantum supremacy&rdquo;has not yet been achieved, and quantum computing appears to be still unsuitable for most applications in biomedical sciences.


Sign in / Sign up

Export Citation Format

Share Document