Joint Base Station Selection and Adaptive Slicing in Virtualized Wireless Networks: A Stochastic Optimization Framework

Author(s):  
Kory Teague ◽  
Mohammad J. Abdel-Rahman ◽  
Allen B. MacKenzie
2022 ◽  
pp. 1-16
Author(s):  
Nagaraj Varatharaj ◽  
Sumithira Thulasimani Ramalingam

Most revolutionary applications extending far beyond smartphones and high configured mobile device use to the future generation wireless networks’ are high potential capabilities in recent days. One of the advanced wireless networks and mobile technology is 5G, where it provides high speed, better reliability, and amended capacity. 5 G offers complete coverage, which is accommodates any IoT device, connectivity, and intelligent edge algorithms. So that 5 G has a high demand in a wide range of commercial applications. Ambrosus is a commercial company that integrates block-chain security, IoT network, and supply chain management for medical and food enterprises. This paper proposed a novel framework that integrates 5 G technology, Machine Learning (ML) algorithms, and block-chain security. The main idea of this work is to incorporate the 5 G technology into Machine learning architectures for the Ambrosus application. 5 G technology provides continuous connection among the network user/nodes, where choosing the right user, base station, and the controller is obtained by using for ML architecture. The proposed framework comprises 5 G technology incorporate, a novel network orchestration, Radio Access Network, and a centralized distributor, and a radio unit layer. The radio unit layer is used for integrating all the components of the framework. The ML algorithm is evaluated the dynamic condition of the base station, like as IoT nodes, Ambrosus users, channels, and the route to enhance the efficiency of the communication. The performance of the proposed framework is evaluated in terms of prediction by simulating the model in MATLAB software. From the performance comparison, it is noticed that the proposed unified architecture obtained 98.6% of accuracy which is higher than the accuracy of the existing decision tree algorithm 97.1% .


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2865 ◽  
Author(s):  
Md Rahman ◽  
YoungDoo Lee ◽  
Insoo Koo

Device-to-device (D2D) communications allows user equipment (UE) that are in close proximity to communicate with each other directly without using a base station. Relay-assisted D2D (RA-D2D) communications in 5G networks can be applied to support long-distance users and to improve energy efficiency (EE) of the networks. In this paper, we first establish a multi-relay system model where the D2D UEs can communicate with each other by reusing only one cellular uplink resource. Then, we apply an adaptive neuro-fuzzy inference system (ANFIS) architecture to select the best D2D relay to forward D2D source information to the expected D2D destination. Efficient power allocation (PA) in the D2D source and the D2D relay are critical problems for operating such networks, since the data rate of the cellular uplink and the maximum transmission power of the system need to be satisfied. As is known, 5G wireless networks also aim for low energy consumption to better implement the Internet of Things (IoT). Consequently, in this paper, we also formulate a problem to find the optimal solutions for PA of the D2D source and the D2D relay in terms of maximizing the EE of RA-D2D communications to support applications in the emerging IoT. To solve the PA problems of RA-D2D communications, a particle swarm optimization algorithm is employed to maximize the EE of the RA-D2D communications while satisfying the transmission power constraints of the D2D users, minimum data rate of cellular uplink, and minimum signal-to-interference-plus-noise-ratio requirements of the D2D users. Simulation results reveal that the proposed relay selection and PA methods significantly improve EE more than existing schemes.


2020 ◽  
Vol 12 (11) ◽  
pp. 193
Author(s):  
Fenyu Jiang ◽  
Chris Phillips

As a result of their high mobility and reduced cost, Unmanned Aerial Vehicles (UAVs) have been found to be a promising tool in wireless networks. A UAV can perform the role of a base station as well as a mobile relay, connecting distant ground terminals. In this paper, we dispatch a UAV to a disaster area to help relay information for victims. We involve a bandwidth efficient technique called the Dual-Sampling (DS) method when planning the UAV flight trajectory, trying to maximize the data transmission throughput. We propose an iterative algorithm for solving this problem. The victim bandwidth scheduling and the UAV trajectory are alternately optimized in each iteration, meanwhile a power balance mechanism is implemented in the algorithm to ensure the proper functioning of the DS method. We compare the results of the DS-enabled scheme with two non-DS schemes, namely a fair bandwidth allocation scheme and a bandwidth contention scheme. The DS scheme outperforms the other two non-DS schemes regarding max-min average data rate among all the ground victims. Furthermore, we derive the theoretical optimal performance of the DS scheme for a given scenario, and find that the proposed approach can be regarded as a general method to solve this optimization problem. We also observe that the optimal UAV trajectory for the DS scheme is quite different from that of the non-DS bandwidth contention scheme.


Sign in / Sign up

Export Citation Format

Share Document