Research and comparison of automatic control algorithm for unmanned ship

Author(s):  
Bao Yao ◽  
Jie Yang ◽  
Qingnian Zhang ◽  
Zhiqiang Guo ◽  
Rong Hu
Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1873 ◽  
Author(s):  
Kong ◽  
Quan ◽  
Yang ◽  
Song ◽  
Zhu

The application of automatic control to irrigation canals is an important means of improving the efficiency of water delivery. The Middle Route Project (MRP) for South-to-North Water Transfer, the largest water transfer project in China, is currently under manual control. Given the complexity of the MRP, there is an urgent need to adopt some form of automatic control. This paper describes the application of model predictive control (MPC), a popular real time control algorithm particularly suited to the automatic control of multi-pool irrigation water delivery systems, to the MRP using a linear control model. This control system is tested in part of the MRP by means of numerical simulations. The results show that the control system can deal with both known and unknown disturbances, albeit with a degree of resonance in some short pools. However, it takes a long time for the MRP to reach a stable state under the MPC system and the calculation time for the whole MRP network would be too long to satisfy the requirements of real-time control. Suggestions are presented for the construction of an automatic control system for the MRP.


2018 ◽  
Vol 19 (12) ◽  
pp. 788-796 ◽  
Author(s):  
V. F. Petrishchev

The task was to develop an automatic landing system (ALS) for a passenger carrier that can be externally activated and excludes the possibility of the crew’s interference into the landing process, for example, when a carrier alters its nominal course or there is no contact with the crew. The air crush history saw a lot of cases that could have been prevented if the planes had had an ALS system and airports had had possibilities to activate that system and suspend the crew from flight control. One of such unforgettable examples is the New-York tragedy of September 11, 2001. State-of-the-art technology allows solving the problem of automatic carrier landing. The most remarkable example demonstrating solution of this problem is the automatic landing of the Buran orbiter 30 years ago on November 15, 1988. The article consists of two sections. The first section of the article deals with conditions of effective solution of autoland problem. It describes in short, the flight modes during automatic landing control. To solve the problem of automatic longitudinal control in the most crucial final landing mode, the author proposes an energy-saving control algorithm that provides control in the mode of negative feedback. The system status vector comprises six parameters: range, altitude, pitch angle, and their first-order derivatives. The control algorithm is developed for the Tupolev TU-154M airliner. In development of the algorithm, the following assumptions were used: a) a linear model of dependence of aerodynamic data on the angle of attack; b) a linear model of programmed switch of engine thrust to the idle mode on the interval of 3 seconds from the beginning of the flareout; c) a pitch angular acceleration, occurring at elevator rate reversal, as a control signal; d) the frequency of the control algorithm operation equal to 200 Hz.The second section further analyzes characteristics of the energy-saving algorithm of automatic control of compulsory passenger carrier landing during the final landing phase, which was developed in the first section. The author developed a model program of control and mathematically modeled the carrier landing phases. When switching from one phase to another, the motion parameters were concatenated so that the final motion parameters of the previous phase became the initial motion parameters of the next phase. The author also studied the influence of errors in aerodynamic data on the landing conditions. The modeling revealed that if a pitch deflection direction is used for the determination of phases, then in a general case, the landing mode consists not of two traditionally determined phases, but of the following three: pitch angle increase (flareout), pitch angle decrease (float), and again, pitch angle increase (this phase is called ‘maintenance’). The necessity to introduce the third phase is determined by the presence of errors in the aerodynamic data of the airplane. On the whole, it is confirmed that the energy saving control algorithm provides successful solution of the problem of automatic landing of a passenger carrier at its final flight phase. At that, it is determined that the landing mode does not exceed 5 s.


2014 ◽  
Vol 494-495 ◽  
pp. 1122-1126
Author(s):  
Hai Jiao Ding ◽  
Wen Gang Che ◽  
Qiang Cao

Study a class of automatic control system and use translational plane method, according to a given system robustness requirements, the closed-loop poles of the system is limited to a certain area, making the system not only meet the robustness of the system requirements, but also make closed-loop poles in a certain area, and find the desired controller. Through simulation studies proved the feasibility and effectiveness of the above algorithm.


2011 ◽  
Vol 354-355 ◽  
pp. 1122-1125
Author(s):  
Xue Qin Lu ◽  
Chen Ning Wu ◽  
Shu Guo Chen

Extension is a new subject which solves sontradictory problems. It studies the extensive possibility of things and the rules and methods of exploitation and innovation with formalized model. The extension control theory and method has provided the basis theory and method for people to solve the existent contradictory questions in the automatic control system such as stability, accuracy and speed.This paper briefly introduces the related basic concepts of extension control, such as the structure of canonical extension control, extension set of character status of basic extension controller, and general extension control algorithm, and so on. Also presents the extension applition in power systems. The future work and prospect of development are described.


1970 ◽  
Vol 110 (4) ◽  
pp. 13-16
Author(s):  
A. Petrovas ◽  
S. Lisauskas ◽  
R. Rinkeviciene

The design process of digital automatic control system with PID controller is considered. The solution of problems related with implementation of PID control algorithm into general purpose 8-bit microcontroller is discussed. Simulation results demonstrating performance of system are presented. Ill. 4, bibl. 6, tabl. 3 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.110.4.277


2011 ◽  
Vol 301-303 ◽  
pp. 310-314
Author(s):  
Xiao Yan Zhou ◽  
Shi Hai Zhao

The work in this paper focuses on developing online measurement and automatic control systems for mercerizing lye concentration and presents the measurement principle and control algorithm in detail. The lye concentration was measured by the system using PLC as controlling core with proportion method. The whole system was connected by overflow pipelines and pumps, which realizes the rapid cycling and online detection of lye, ultimately achieves the reuse of working lye and effectively reduces emissions of lye.


Sign in / Sign up

Export Citation Format

Share Document