Optimization Design of Wireless Charging Magnetic Coupling Coil Based on Finite Element

Author(s):  
Xuguang Liu ◽  
Jinda Zhu ◽  
Zhuofei Yu ◽  
Jian Luo ◽  
Di Wu
2012 ◽  
Vol 229-231 ◽  
pp. 613-616
Author(s):  
Yan Jue Gong ◽  
Yuan Yuan Zhang ◽  
Fu Zhao ◽  
Hui Yu Xiang ◽  
Chun Ling Meng ◽  
...  

As an important part of the vertical axis wind turbine, the support structure should have high strength and stiffness. This article adopts finite element method to model a kind of tower structure of the vertical axis wind turbine and carry out static and modal analysis. The static and dynamic characteristic results of tower in this paper provide reference for optimization design the support structure of wind turbine further.


2012 ◽  
Vol 497 ◽  
pp. 89-93
Author(s):  
Liang Liang Yuan ◽  
Ke Hua Zhang ◽  
Li Min

In order to process heterotype hole of workpiece precisely, an open abrasive flow polish machine is designed, and the optimization design of machine frame is done for low cost. Firstly, basing on the parameters designed with traditional ways, three-dimensional force model is set up with the soft of SolidWorks. Secondly, the statics and modal analysis for machine body have been done in Finite element methods (FEM), and then the optimization analysis of machine frame has been done. At last, the model of rebuild machine frame has been built. Result shows that the deformation angle value of machine frame increased from 0.72′ to 1.001′, the natural frequency of the machine decreased from 75.549 Hz to 62.262 Hz, the weight of machine decreased by 74.178 Kg after optimization. It meets the strength, stiffness and angel stiffness requirement of machine, reduces the weight and cost of machine.


2012 ◽  
Vol 430-432 ◽  
pp. 828-833
Author(s):  
Qiu Sheng Ma ◽  
Yi Cai ◽  
Dong Xing Tian

In this paper, based on ANSYS the topology optimization design for high pressure storage tank was studied by the means of the finite element structural analysis and optimization. the finite element model for optimization design was established. The design variables influence factors and rules on the optimization results are summarized. according to the calculation results the optimal design result for tank is determined considering the manufacturing and processing. The calculation results show that the method is effective in optimization design and provide the basis to further design high pressure tank.


2015 ◽  
Vol 07 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Z. C. He ◽  
G. Y. Zhang ◽  
L. Deng ◽  
Eric Li ◽  
G. R. Liu

The node-based smoothed finite element method (NS-FEM) proposed recently has shown very good properties in solid mechanics, such as providing much better gradient solutions. In this paper, the topology optimization design of the continuum structures under static load is formulated on the basis of NS-FEM. As the node-based smoothing domain is the sub-unit of assembling stiffness matrix in the NS-FEM, the relative density of node-based smoothing domains serves as design variables. In this formulation, the compliance minimization is considered as an objective function, and the topology optimization model is developed using the solid isotropic material with penalization (SIMP) interpolation scheme. The topology optimization problem is then solved by the optimality criteria (OC) method. Finally, the feasibility and efficiency of the proposed method are illustrated with both 2D and 3D examples that are widely used in the topology optimization design.


2014 ◽  
Vol 548-549 ◽  
pp. 383-388
Author(s):  
Zhi Wei Chen ◽  
Zhe Cui ◽  
Yi Jin Fu ◽  
Wen Ping Cui ◽  
Li Juan Dong ◽  
...  

Parametric finite element model for a commonly used telescopic boom structure of a certain type of truck-mounted crane has been established. Static analysis of the conventional design configuration was performed first. And then an optimization process has been carried out to minimize the total weight of the telescopic structures. The design variables include the geometric shape parameters of the cross-sections and the integrated structural parameters of the telescopic boom. The constraints include the maximum allowable equivalent stresses and the flexure displacements at the tip of the assembled boom structure in both the vertical direction and the circumferential direction of the rotating plane. Compared with the conventional design, the optimization design has achieved a significant weight reduction of up to 24.3%.


2012 ◽  
Vol 490-495 ◽  
pp. 2785-2789
Author(s):  
Dong Sun ◽  
Xu Dong Yang

The milling planer bed is one of the most important foundational parts for the entire machine, sufficient stiffness is required. The posterior segment of a certain milling planer bed is regarded as the optimization object in this paper. Three-dimensional modeling method is used to calculate the exact weight of the bed and then finite element analysis is used to research the static and dynamic characteristics before and after weight-reduction. The weak link of the bed is found out and a improvement scheme is put forward ensuring lower production costs under the premise of sufficient rigidity.


2009 ◽  
Vol 419-420 ◽  
pp. 89-92
Author(s):  
Zhuo Yi Yang ◽  
Yong Jie Pang ◽  
Zai Bai Qin

Cylinder shell stiffened by rings is used commonly in submersibles, and structure strength should be verified in the initial design stage considering the thickness of the shell, the number of rings, the shape of ring section and so on. Based on the statistical techniques, a strategy for optimization design of pressure hull is proposed in this paper. Its central idea is that: firstly the design variables are chosen by referring criterion for structure strength, then the samples for analysis are created in the design space; secondly finite element models corresponding to the samples are built and analyzed; thirdly the approximations of these analysis are constructed using these samples and responses obtained by finite element model; finally optimization design result is obtained using response surface model. The result shows that this method that can improve the efficiency and achieve optimal intention has valuable reference information for engineering application.


Sign in / Sign up

Export Citation Format

Share Document