Task identification in Massive MIMO Technology for Its Effective Implementation in 5G and Satellite Communication

Author(s):  
J. Chattopadhyay ◽  
S.P.V. Subba Rao
Author(s):  
Xu Shuang

With the explosive growth in the number of communication users and the huge demand for data from users, Limited low-frequency resources have been far from being satisfied by users. The combination of Massive MIMO technology and millimeter-wave technology has brought new hope to users. In this paper, several basic algorithms are placed under the millimeter wave large-scale antenna channel for simulation research.


2017 ◽  
Vol 55 (6) ◽  
pp. 155-161 ◽  
Author(s):  
Gabor Fodor ◽  
Nandana Rajatheva ◽  
Wolfgang Zirwas ◽  
Lars Thiele ◽  
Martin Kurras ◽  
...  
Keyword(s):  

Author(s):  
Kanchana Devi A ◽  
Bhuvaneswari B

Massive MIMO is a advance of MIMO technology. M-MIMO use hundreds of Base station (BS) to simultaneously serve multiple users. It combines with millimeter wave (mmWave) to provide huge spectral efficient, high reliability and high energy efficiency. Massive MIMO gives huge antennas, high signal strength, less noise reduction and also using better channel model. This paper discusses the detail description of fifth generation (5G) network architecture and to improve massive MIMO in existing technology.


In massive MIMO systems, the selection of optimal transmits antennas remains as a major constraint. As the number of antennas is increased, the power or energy consumption also increases. Selection of optimal transmit antennas is considered as a multi objective problem, where the energy has to be minimizedand the spectral efficiency (bandwidth) has to be increased. In fact, for attaining higher bandwidth, more transmit antennas have to be selected, which leads to increase in power consumption, In this proposal various papers are reviewed for Energy and Spectral Efficiency performance in Massive MIMO Technology through different algorithms and parameter comparisons are made to identify the better algorithms in terms of EE and SE to achieve the higher data transmission rates, BER, mitigating the inter Noise interference.


Author(s):  
Zahra Amirifar ◽  
Jamshid Abouei

<p>The massive multiple-input multiple-output (MIMO) technology has been applied innew generation wireless systems due to growing demand for reliability and high datarate. Hybrid beamforming architectures in both receiver and transmitter, includinganalog and digital precoders, play a significant role in 5G communication networksand have recently attracted a lot of attention. In this paper, we propose a simple andeffective beamforming precoder approach for mmWave massive MIMO systems. Wefirst solve an optimization problem by a simplification subject, and in the second step,we use the covariance channel matrixfCk=Cov(Hk)andBk=HkHHkinstead of chan-nel matrixHk. Simulation results verify that the proposed scheme can enjoy a highersum rate and energy efficiency than previous methods such as spatially sparse method,analog method, and conventional hybrid method even with inaccurate Channel StateInformation (CSI). Percentage difference of the achievable rate ofCk=Cov(Hk)andBk=HkHHkschemes compared to conventional methods are 2.51% and 48.94%, re-spectively.</p>


2021 ◽  
Vol 2061 (1) ◽  
pp. 012094
Author(s):  
N S Druzhinina ◽  
I M Daudov

Abstract The article discusses the features of the Massive MIMO technology, the structure of the antenna array, as well as the advantages and example of using the massive MIMO system. The use of Massive MIMO opens up new opportunities and makes a significant contribution to achieving the stated requirements for the further evolution of LTE and 5G.


Sign in / Sign up

Export Citation Format

Share Document