Design process of a high torque density direct drive involving a transverse flux machine

Author(s):  
J. Jung ◽  
S. Ulbrich ◽  
W. Hofmann
2012 ◽  
Vol 06 ◽  
pp. 109-114
Author(s):  
BYUNG-CHUL WOO ◽  
DO-KWAN HONG ◽  
JI-YOUNG LEE

The most distinctive advantage of transverse flux motor(TFM) is high torque density which has prompted many researches into studying various design variants. TFM is well suited for low speed direct drive applications due to its high torque density. This paper deals with simulation based comparisons between a surface permanent magnet transverse flux motor(SPM-TFM) and an interior permanent magnet transverse flux motor(IPM-TFM). A commercial finite element analysis(FEA) software Maxwell 3D is used for electromagnetic field computation to fully analyze complex geometry of the TFMs. General characteristics, such as cogging torque, rated torque and torque ripple characteristics of the two TFMs are analyzed and compared by extensive 3D FEA.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ying Fan ◽  
Lingling Gu ◽  
Yong Luo ◽  
Xuedong Han ◽  
Ming Cheng

This paper presents a flux-modulated direct drive (FMDD) motor. The key is to integrate the magnetic gear with the PM motor while removing the gear inner-rotor. Hence, the proposed FMDD motor can achieve the low-speed high-torque output and high-speed compact design requirements as well as high-torque density with a simple structure. The output power equation is analytically derived. By using finite element analysis (FEA), the static characteristics of the proposed motor are obtained. Based on these characteristics, the system mathematical model can be established. Hence, the evaluation of system performances is conducted by computer simulation using the Matlab/Simulink. A prototype is designed and built for experimentation. Experimental results are given to verify the theoretical analysis and simulation.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 152
Author(s):  
Hassan Ali ◽  
Erwan Sulaiman ◽  
Zamri Omar ◽  
M F. Omar ◽  
Faisal Amin

All electric aircraft (AEA), is one of the main intentions of the aerospace industry for future. Where electrical machines are capable to provide high torque density and are dominant for the feasibility of direct drive electrical driving force for aircraft applications. Besides, low weight and high torque capabilities, the best candidate solution should also inherently fault tolerant for aircraft applications. For these reasons, a new sort of machine has been familiarized and published in last decade know as flux switching machine (FSM). FSMs contain all excitation sources on stator side with robust rotor structure. According to the type of excitation, FSMs are characterized into three types such as permanent magnet PM FSM, field excitation FE FSM and hybrid excitation HE FSM. PM FSM and FE FSM use PM and FE coil for their excitation sources respectively, whereas both PM and FE coil is used in HE-FSM for excitation. Subsequently, these machines have shown high torque to weight ratios and high efficiency during research in the last decade. Therefore in this paper, a new structure of 12S-8P HE-FSM with segmental rotor has been proposed and analyzed. The proposed segmented HE-FSM has the simple structure using only three PMs and three FECs. The proposed structure is analyzed using commercial 2D FEA package, JMAG-designer ver. 14.0. This paper presents the coil test analysis of segmented HE-FSM to confirm the working principle. Besides, cogging torque, flux strengthening, torque vs current densities and power vs current densities have been analyzed and presented. 


2014 ◽  
Vol 2 (3) ◽  
pp. 28 ◽  
Author(s):  
Y. Yamamoto ◽  
T. Koseki ◽  
Y. Aoyama

Electric ship propulsion system has been drawing attention as a solution for savings in energy and maintenance costs. The system is mainly composed of motor, converter and gearbox and required for high torque at low speed. In this situation, transverse flux motors (TFMs) have been proposed to fulfill the low-speed high-torque characteristic due to suitable for short pole pitch and large number of poles to increase torque output. In this trend, we have proposed C-core type motors taking advantage of TFMs’ structure. In this manuscript, a simple design method based on the magnetic-circuit theory and simple modeling of the motor is proposed to search a design parameter for maximizing torque as a pre-process of numerical study. The method takes into consideration the effects of magnetic leakage flux, magnetic saturation and pole-core combination in accordance with the systematic theory. The simple modeling is conducted based on a dense armature structure in previous axial flux motors (AFMs) applied to the new motor design. The validity of the method is verified by 3-D finite element analysis (FEA) and relative error is at most 20%. The minimalist design is shown to be advantageous for effective use in 3-D FEA. As a detailed design by the FEA, high torque density and low cogging to output ratio can be achieved simultaneously in the proposed machine.


Author(s):  
Byeong-chul Lee ◽  
Cheon-ho Song ◽  
Do-hyun Kim ◽  
Ki-chan Kim

In this paper, the design process of BLDC adopting the dual rotor method that can reduce the overall size of the motor while generating the same torque as the conventional Permanent Magnet BLDC is analyzed. A simple size is selected by obtaining the torque per rotor volume (TRV), and a method of matching the counter electromotive force by selecting the pole arc of the magnet through a magnetic equivalent circuit is analyzed. Since the efficiency is low because the 120-degree commutation method is selected, the middle stator is optimized through detailed design through the experimental design method. Afterwards, it has the advantage of being able to shift without stopping due to the characteristic of a dual rotor. For this, an analysis of the driving characteristics for each mode is performed.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7173
Author(s):  
Víctor Ballestín-Bernad ◽  
Jesús Sergio Artal-Sevil ◽  
José Antonio Domínguez-Navarro

High torque and power density are unique merits of transverse flux machines (TFMs). TFMs are particularly suitable for use in direct-drive systems, that is, those power systems with no gearbox between the electric machine and the prime mover or load. Variable speed wind turbines and in-wheel traction seem to be great-potential applications for TFMs. Nevertheless, the cogging torque, efficiency, power factor and manufacturing of TFMs should still be improved. In this paper, a comprehensive review of TFMs topologies and design is made, dealing with TFM applications, topologies, operation, design and modeling.


Sign in / Sign up

Export Citation Format

Share Document