Effects of Fullerene C60 on the Dielectric Strength of Epoxy Resin at Elevated Temperature

Author(s):  
Boxue Du ◽  
Yifang Wang ◽  
Xiaoxiao Kong ◽  
Hanlei Sun ◽  
Jin Li ◽  
...  
2015 ◽  
Vol 749 ◽  
pp. 126-128 ◽  
Author(s):  
Ho Kyoung Choi ◽  
Bong Goo Choi ◽  
Yong Yoon Lee ◽  
Jae Sik Na

1-Benzyl-3-methyl-imidazolium hexafluoroantimonate (BMH) was newly synthesized and characterized with FT-IR, 1H-NMR. We synthesized catalysts fulfill requirements for a rapid cure at a moderately elevated temperature in curing the epoxy resin for neat diglycidyl ether bisphenol A (DGBEA). The cure behavior of this resin was investigated at elevated temperature and cure temperature in the presence of 0.5, 1.0, 2.0 wt% of 1-benzyl-3-methyl-imidazolium hexafluoroantimonate (BMH) by mean of differential scanning calorimeter (DSC). Chemical conversion as function of temperature and amount of BMH (0.5, 1.0, 2.0 wt%) were determined from DSC. It was found that BMH were superior latent thermal catalyst for catinonic curing which have a good thermal stability.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5165
Author(s):  
Dong-Hun Oh ◽  
Ho-Seung Kim ◽  
Jae-Hun Shim ◽  
Young-Ho Jeon ◽  
Da-Won Kang ◽  
...  

The dielectric strength and gel time of epoxy composites vary with the mixing ratio of epoxy resin, hardener, additives, filler, etc., and especially the gel time affects the productivity and economics of ultra-high-voltage (UHV) equipment. However, previous studies focused only on the dielectric strength of epoxy composites for the reliability of UHV equipment. Therefore, a study considering both the dielectric strength and gel time of the epoxy composite is required. In this paper, the characteristics of the gel time and dielectric strength of the epoxy micro-composites according to the mixing ratio of silica (SiO2) and alumina (Al2O3) micro-fillers without changing the mixing ratio of epoxy resin and hardener are analyzed. Experimental results show that the gel time decreased and the dielectric strength increased as the mixing ratio of the SiO2 micro-filler increased. Therefore, it is concluded that the gel time can be controlled by changing the mixing ratio of micro-fillers without changing the mixing ratio of the epoxy resin and hardener. In addition, experimental data can be used as basic data for economical production considering both the reliability and productivity of UHV power equipment.


2019 ◽  
Vol 13 (26) ◽  
pp. 146-150
Author(s):  
Jinan M. H. Jabir

In this study a polymeric composite material was prepared by handlay-up technique from epoxy resin as a matrix and magnesium oxide(MgO) as a reinforcement with different weight fraction (5,10,15,and 20)% to resin. Then the prepared samples were immersed undernormal condition in H2So4(1 M) solution, for periods ranging up to10 weeks. The result revealed that the diffusion coefficientdecreasing as the concentration of MgO increase. Also we studiedHardness for the prepared samples before and after immersion. Theresult revealed that the hardness values increase as the concentrationof MgO increase, while the hardness for the samples after immersionin H2SO4 decreased as compared to those before immersion. Inaddition, the dielectric strength decreasing by increasing the MgOconcentration with time immersion.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2161
Author(s):  
Andrzej Rybak

Epoxy resin composites filled with ceramic particles are commonly applied in electrification devices as an electrical insulation. In order to maintain proper functionality of such apparatuses it is crucial to optimize a broad range of properties, such as thermal, mechanical and dielectric parameters. In an earlier paper, a novel core-shell filler was developed in order to enhance the thermal conductivity in the epoxy composite used as electrical insulation. The new filler was made of a standard material, which was covered by a thin layer of high thermally conductive shell, namely, alumina coated by aluminum nitride. It was previously shown that the epoxy resin filled with the core-shell Al2O3@AlN particles showed a significant increase in thermal conductivity with a 63% relative increase. In this paper, a set of complementary measurements was performed and analyzed, namely, rheology, tensile strength, dynamic mechanical analysis, and dilatometry. Moreover, the dielectric permittivity and strength, and electrical resistivity were investigated in order to check if the electrical insulation properties were maintained. The obtained results were compared with the epoxy composite filled with the standard filler. The rheological behavior of the core-shell filled system showed that the processability will not be hindered. The mechanical properties of the composite based on core-shell filler are better than those of the reference system. The coefficient of linear thermal expansion is lower for epoxy filled with core-shell filler, which can lead to better adhesion to internal parts in the electrification devices. The dielectric strength was enhanced by 16% for the core-shell filled epoxy. The investigation clearly demonstrates that the epoxy composite filled with the core-shell particles is an appropriate material for application as electrical insulation with enhanced thermal conductivity.


2019 ◽  
Vol 54 (17) ◽  
pp. 2231-2243
Author(s):  
M Hoseini ◽  
G Dini ◽  
M Bahadori

In this study, the rice husk as a source of silica was used to synthesize the Al2O3/SiC composite via the self-propagation high-temperature synthesis (SHS) process. Then, the particle size of the synthesized product was reduced to the nanoscale using a planetary ball mill. Finally, different amounts (5, 10, and 15 wt.%) of Al2O3/SiC nanoparticles were incorporated into an epoxy resin in order to improve the mechanical properties and the dielectric strength of fabricated epoxy-based composites. The results indicated that the Al2O3/SiC composite was successfully synthesized by the SHS process from a mixture of the rice husk ash, Al, and carbon black powders as starting materials. The average size of the synthesized Al2O3/SiC particles decreased to 80 nm after 12-h ball milling. Also, the mechanical properties of the fabricated epoxy-based composite samples were improved with the addition of Al2O3/SiC nanoparticles in the investigated range in comparison with the pure epoxy sample. Additionally, the overall dielectric strength of the fabricated epoxy-based composites containing 5–15 wt.% of Al2O3/SiC nanoparticles was higher than that of the pure epoxy. These results were interpreted in terms of the synthesis mechanism of Al2O3/SiC composite via the SHS process, the rice husk ash structure, the interfacial bonding between the polymer chains and the surface of nanoparticles, and the insulation nature of the synthesized nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document