3D Package CSP Solder Joints Morphological Parameters Sensitivity Analysis and Optimization in Temperature-vibration Coupling Environment

Author(s):  
LiShuai Han ◽  
Hongqin Wang ◽  
ChunYue Huang ◽  
Wei Li ◽  
Jinbao Cai
2010 ◽  
Author(s):  
Mike Roellig ◽  
Karsten Meier ◽  
Rene Metasch ◽  
Ehrenfried Zschech ◽  
Shinichi Ogawa ◽  
...  

2010 ◽  
Vol 2010 (1) ◽  
pp. 000766-000770 ◽  
Author(s):  
Mary Liu ◽  
Wusheng Yin

In order to meet the demand of fine pitch and 3D package, and eliminate complex underfilling process, a first solder joint encapsulant has been invented. Solder joint encapsulant adhesive is to encapsulate each individual solder joint using polymer to enhance solder joint, and leave empty space in-between solder joints to avoid thermal stress applied onto solder joints. Now two kinds of solder joint encapsulants are SMT256 and SMT266, which have been used in the customer field. Using solder joint encapsulants – SMT256 and SMT266, the pull strength of solder joint has been increased by about five times, resulting in significant increase in the reliability. In this paper more details have been investigated.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Lihua Liang ◽  
Yuanxiang Zhang ◽  
Yong Liu

Electromigration (EM) in solder joints under high current density has become a critical reliability issue for the future high density microelectronic packaging. This paper presents atomic density redistribution algorithm for predicting electromigration induced void nucleation and growth in solder joints of Chip Scale Package (CSP) structure. The driving force for electromigration induced failure considered here includes the electron wind force, stress gradients, temperature gradients, as well as the atomic density gradient, which were neglected in many of the existing studies on electromigration. The simulation results for void generation and time to failure (TTF) are discussed and correlated with the previous test results. EM sensitivity analysis is also performed to investigate the effect of EM parameters and mechanical properties of material on electromigration failure. The simulation results indicated that the atomic density on the activation energy is quite sensitive, and the mechanical material parameters have no impact on EM sensitivity of normalized atomic density.


Author(s):  
Amreek Singh ◽  
Warren G. Foster ◽  
Anna Dykeman ◽  
David C. Villeneuve

Hexachlorobenzene (HCB) is a known toxicant that is found in the environment as a by-product during manufacture of certain pesticides. This chlorinated chemical has been isolated from many tissues including ovary. When administered in high doses, HCB causes degeneration of primordial germ cells and ovary surface epithelium in sub-human primates. A purpose of this experiment was to determine a no-effect dose of the chemical on the rat ovary. The study is part of a comprehensive investigation on the effects of the compound on the biochemical, hematological, and morphological parameters in the monkey and rat.


Sign in / Sign up

Export Citation Format

Share Document