Preparation and finite element numerical simulation of glass fiber reinforced composite sandwich hollow columns

Author(s):  
Wen Yingwen
2019 ◽  
Vol 54 (5) ◽  
pp. 669-680 ◽  
Author(s):  
S Prabhakaran ◽  
V Krishnaraj ◽  
Krishna Shankar ◽  
M Senthilkumar ◽  
R Zitoune

In recent years, material scientists have been focusing on the utilization of materials from natural resources due to environmental concerns. In the same context, the aim of this work is to evaluate impact response, sound absorption behavior, and vibration damping characteristics of natural-based composite sandwich made of flax as skin reinforcement and agglomerated cork as core. Vacuum bagging method was used for manufacturing composite sandwiches with different cork densities of 240, 280, and 340 kg/m3. Composite sandwiches have also been manufactured by using glass as skin reinforcement for comparison. Low velocity impact test was conducted and found that glass fiber reinforced composite sandwich required 73–77% more energy to perforate when compared to the flax fiber reinforced composite sandwich irrespective of core density. Flax fiber reinforced composite sandwich has 45–96% higher sound absorption capacity and 27–32% higher vibration damping ratio than glass fiber reinforced composite sandwich irrespective of core density. This is due to multiscale structure and cellular nature of the flax fiber and the cork materials, respectively. These enhancements in sound and vibration are accomplished with just little forfeits in perforation energy. This study recommends that, if optimized, the natural-based composite sandwich could be an ecologically appealing answer for automobile and construction applications, where impact behavior is important, along with sound and vibration properties.


2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.


2017 ◽  
Author(s):  
◽  
John Olumide Olusanya

In this study, the fatigue life of fiber reinforced composite (FRC) materials system was investigated. A nano-filler was used to increase the service life of the composite structures under cyclical loading since such structures require improved structural integrity and longer service life. Behaviour of glass fiber reinforced composite (GFRC) enhanced with various weight percentages (1 to 5 wt. %) of Cloisite 30B montmorillonite (MMT) clay was studied under static and fatigue loading. Epoxy clay nanocomposite (ECN) and hybrid nanoclay/GFRC laminates were characterised using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The mechanical properties of neat GFRC and hybrid nanoclay/GFRC laminates were evaluated. Fatigue study of the composite laminates was conducted and presented using the following parameter; matrix crack initiation and propagation, interfacial debonding, delamination and S–N relationship. Residual strength of the materials was evaluated using DMA to determine the reliability of the hybrid nanoclay/GFRC laminates. The results showed that ECN and hybrid nanoclay/GFRC laminates exhibited substantial improvement in most tests when compared to composite without nanoclay. The toughening mechanism of the nanoclay in the GFRC up to 3 wt. % gave 17%, 24% and 56% improvement in tensile, flexural and impact properties respectively. In the fatigue performance, less crack propagations was found in the hybrid nanoclay/GFRC laminates. Fatigue life of hybrid nanoclay/GFRC laminate was increased by 625% at the nanoclay addition up to 3 wt. % when compared to neat GFRC laminate. The residual strength of the composite materials revealed that hybrid nanoclay/GFRC showed less storage modulus reduction after fatigue. Likewise, a positive shift toward the right was found in the tan delta glass transition temperature (Tg) of 3 wt. % nanoclay/GFRC laminate after fatigue. It was concluded that the application of nanoclay in the GFRC improved the performance of the material. The hybrid nanoclay/GFRC material can therefore be recommended mechanically and thermally for longer usage in structural application.


Sign in / Sign up

Export Citation Format

Share Document