A study on the effects of lightning and marker color variation to marker detection and tracking accuracy in gait analysis system

Author(s):  
Irda Eva Sampe ◽  
Amar Vijai N ◽  
R. M. Tati Latifah ◽  
Tommy Apriantono
Mechatronics ◽  
2001 ◽  
Vol 11 (4) ◽  
pp. 409-437 ◽  
Author(s):  
M.Shahid Shafiq ◽  
S.Turgut Tümer ◽  
H.Cenk Güler

Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1350
Author(s):  
Karalikkadan Ashhar ◽  
Mohammad Khyam ◽  
Cheong Soh

Gait analysis in unrestrained environments can be done with a single wearable ultrasonic sensor node on the lower limb and four fixed anchor nodes. The accuracy demanded by such systems is very high. Chirp signals can provide better ranging and localization performance in ultrasonic systems. However, we cannot neglect the multi-path effect in typical indoor environments for ultrasonic signals. The multi-path components closer to the line of sight component cannot be identified during correlation reception which leads to errors in the estimated range and which in turn affects the localization and tracking performance. We propose a novel method to reduce the multi-path effect in ultrasonic sensor networks in typical indoor environments. A gait analysis system with one mobile node attached to the lower limb was designed to test the performance of the proposed system during an indoor treadmill walking experiment. An optical motion capture system was used as a benchmark for the experiments. The proposed method gave better tracking accuracy compared to conventional coherent receivers. The static measurements gave 2.45 mm standard deviation compared to 10.45 mm using the classical approach. The RMSE between the ultrasonic gait analysis system and the reference system improved from 28.70 mm to 22.28 mm. The gait analysis system gave good performance for extraction of spatial and temporal parameters.


2020 ◽  
Vol 71 (7) ◽  
pp. 868-880
Author(s):  
Nguyen Hong-Quan ◽  
Nguyen Thuy-Binh ◽  
Tran Duc-Long ◽  
Le Thi-Lan

Along with the strong development of camera networks, a video analysis system has been become more and more popular and has been applied in various practical applications. In this paper, we focus on person re-identification (person ReID) task that is a crucial step of video analysis systems. The purpose of person ReID is to associate multiple images of a given person when moving in a non-overlapping camera network. Many efforts have been made to person ReID. However, most of studies on person ReID only deal with well-alignment bounding boxes which are detected manually and considered as the perfect inputs for person ReID. In fact, when building a fully automated person ReID system the quality of the two previous steps that are person detection and tracking may have a strong effect on the person ReID performance. The contribution of this paper are two-folds. First, a unified framework for person ReID based on deep learning models is proposed. In this framework, the coupling of a deep neural network for person detection and a deep-learning-based tracking method is used. Besides, features extracted from an improved ResNet architecture are proposed for person representation to achieve a higher ReID accuracy. Second, our self-built dataset is introduced and employed for evaluation of all three steps in the fully automated person ReID framework.


1999 ◽  
Vol 21 (2) ◽  
pp. 120
Author(s):  
Yanming Yang ◽  
Fang Lin ◽  
Bo Yuan ◽  
Zheng Li

Author(s):  
Gunjan Patel ◽  
Rajani Mullerpatan ◽  
Bela Agarwal ◽  
Triveni Shetty ◽  
Rajdeep Ojha ◽  
...  

Wearable inertial sensor-based motion analysis systems are promising alternatives to standard camera-based motion capture systems for the measurement of gait parameters and joint kinematics. These wearable sensors, unlike camera-based gold standard systems, find usefulness in outdoor natural environment along with confined indoor laboratory-based environment due to miniature size and wireless data transmission. This study reports validation of our developed (i-Sens) wearable motion analysis system against standard motion capture system. Gait analysis was performed at self-selected speed on non-disabled volunteers in indoor ( n = 15) and outdoor ( n = 8) environments. Two i-Sens units were placed at the level of knee and hip along with passive markers (for indoor study only) for simultaneous 3D motion capture using a motion capture system. Mean absolute percentage error (MAPE) was computed for spatiotemporal parameters from the i-Sens system versus the motion capture system as a true reference. Mean and standard deviation of kinematic data for a gait cycle were plotted for both systems against normative data. Joint kinematics data were analyzed to compute the root mean squared error (RMSE) and Pearson’s correlation coefficient. Kinematic plots indicate a high degree of accuracy of the i-Sens system with the reference system. Excellent positive correlation was observed between the two systems in terms of hip and knee joint angles (Indoor: hip 3.98° ± 1.03°, knee 6.48° ± 1.91°, Outdoor: hip 3.94° ± 0.78°, knee 5.82° ± 0.99°) with low RMSE. Reliability characteristics (defined using standard statistical thresholds of MAPE) of stride length, cadence, walking speed in both outdoor and indoor environment were well within the “Good” category. The i-Sens system has emerged as a potentially cost-effective, valid, accurate, and reliable alternative to expensive, standard motion capture systems for gait analysis. Further clinical trials using the i-Sens system are warranted on participants across different age groups.


2021 ◽  
Author(s):  
Nils Roth ◽  
Georg P. Wieland ◽  
Arne Kuderle ◽  
Martin Ullrich ◽  
Till Gladow ◽  
...  

2016 ◽  
Vol 34 (2) ◽  
pp. 195
Author(s):  
Bae Youl Lee ◽  
Seung Don Yoo ◽  
Seung Ah Lee ◽  
JinMann Chon ◽  
Dong Hwan Kim ◽  
...  

2010 ◽  
Vol 12 (4) ◽  
pp. 527-531
Author(s):  
Hideo Kawakami ◽  
Nobuhiko Sugano ◽  
Hidenobu Miki ◽  
Kazuo Yonenobu ◽  
Asaki Hattori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document