Research on Face Fluid Field and Seal Performance of T-shape Groove Dry Gas Seal

Author(s):  
Zhu Weibing ◽  
Wang Heshun ◽  
Zhou Shengren ◽  
Chen Xiuqin
Keyword(s):  
1979 ◽  
Vol 46 (1) ◽  
pp. 26-30 ◽  
Author(s):  
J. W. Berglund

The transient dynamic response of an elastic circular plate subjected to a suddenly applied pressure is determined for several edge boundary conditions. The plate boundary is attached to a semi-infinite, radially rigid tube which is filled with an acoustic fluid, and pressure is applied to the in-vacuo side of the plate. The transient solution is determined by using a technique in which the plate is subjected to a periodic pressure function constructed of appropriately signed and time-shifted Heaviside step functions, and by relying on a physical mechanism which returns the plate and fluid near the plate to an unstrained state of rest between pulses. The plate response is presented for a number of radius-to-thickness ratios and edge boundary conditions when interacting with water. Comparisons are also made with solutions obtained using a plane wave approximation to the fluid field.


2013 ◽  
Vol 753-755 ◽  
pp. 2766-2769
Author(s):  
Quan Zhang ◽  
Zhi Jun Shuai ◽  
Pan Zhou ◽  
Wan You Li

In this paper the seat vibration acceleration response was reduced through flow passage modification of the centrifugal pump which could decrease the fluid excitation of the pump. CFD simulation technology was applied to optimize the fluid field of the multi-stage centrifugal pump, and then the velocity, pressure fluctuation and fluid excitation were concerned to investigate the effect of optimization. Finally, the influence of fluid field modification on the seat vibration response was verified experimentally.


2018 ◽  
Author(s):  
Roy Sahadevan ◽  
Basma Al Menhali
Keyword(s):  

Author(s):  
Renat Badykov ◽  
Sergei Falaleev ◽  
Houston Wood ◽  
Alexander Vinogradov
Keyword(s):  

2010 ◽  
Vol 156-157 ◽  
pp. 948-955
Author(s):  
Guang Yao Meng ◽  
Ji Wen Tan ◽  
Yi Cui

Relative motion between grinding wheel and workpiece makes the lubricant film pressure formed by grinding fluid in the grinding area increase, consequently, dynamic pressure lubrication forms. The grinding fluid flow field mathematical model in smooth grinding area is established based on lubrication theory. The dynamic pressure of grinding fluid field, flow velocity and carrying capacity of lubricating film are calculated by the numerical analysis method. An analysis of effect of grinding fluid hydrodynamic on the total lifting force is performed, and the results are obtained.


Author(s):  
Jianshu Lin ◽  
Hong Wang

A comprehensive analysis method is proposed to resolve the problem of simulating a complex thermo-flow with two kinds of distinct characteristic length in the dry gas seal, and a conjugated simulation of the complicated heat transfer and the gas film flow is carried out by using the commercial CFD software CFX. By using the proposed method, a three dimensional of velocity and pressure field in the gas film flow and the temperature distribution within the sealing rings are investigated for three kinds of film thickness, respectively. A comparison of thermo-hydrodynamics of the dry gas seals is conducted between the sealed gas of air and helium. The latter one is used in a helium circulator for High Temperature Gas-cooled Reactor (HTGR). From comparisons and discussions of a series of simulation results, it will be found that the comprehensive proposal is effective and simulation results are reasonable, and the maximum temperature rise in the dry gas seal is within the acceptable range of HTGR safety requirements.


Author(s):  
Danilo Pianini ◽  
Stefano Mariani ◽  
Mirko Viroli ◽  
Franco Zambonelli
Keyword(s):  

2012 ◽  
Vol 226-228 ◽  
pp. 1829-1834 ◽  
Author(s):  
Jing Yuan Tang ◽  
Jian Ming Chen ◽  
Hong Bin Ma ◽  
Guang Yu Tang

The flow field characteristics in U-typed bend has been extensively studied for transit time ultrasonic flowmeters designing, but for the flowmeter with three-Z-shaped round pipe there is still lack of corresponding research. This paper presents a computational fluid dynamics (CFD) approach for modeling of the three-Z-shaped ultrasonic flowmeter and studying of internal fluid field characteristics based on Reynolds stress model (RSM). The fluid velocity profile in the three ultrasound path is obtained using CFD and secondary flow in cross section also is analyzed. The simulation results show that the internal flow fields in the flowmeter are not fully developed turbulence with asymmetric axial velocity distribution and dramatic changes along the flow direction, and there are obvious secondary cross flows on theirs cross-sections. The CFD simulations provide useful insights into the flow field associated with ultrasonic flowmeters design.


2013 ◽  
Vol 68 ◽  
pp. 285-292 ◽  
Author(s):  
Ibrahim Shahin ◽  
Mohamed Gadala ◽  
Mohamed Alqaradawi ◽  
Osama Badr

Author(s):  
Kai Li ◽  
Yihui Zhao ◽  
Maiqi Liu ◽  
Xiaoying Wang ◽  
Fangyuan Zhang ◽  
...  

Abstract Micro/nano scale structure as important functional part have been widely used in wearable flexible sensors, gas sensors, biological tissue engineering, microfluidic chips super capacitors and so on. Here a multi-scale electrohydrodynamic jet (E-Jet) 3D printing approach regulated by structured multi-physics fields was demonstrated to generate 800 nm scale 2D geometries and high aspect ratio 3D structures. The simulation model of jetting process under resultant effect of top fluid field, middle electric field and bottom thermal field was established. And the physical mechanism and scale law of jet formation were studied. The effects of thermal field temperature, applied voltage and flow rate on the jet behaviors were studied; and the range of process parameters of stable jet was obtained. The regulation of printing parameters was used to manufacture the high resolution gradient graphics and the high aspect ratio structure with tight interlayer bonding. The structural features could be flexibly adjusted by reasonably matching the process parameters. Finally, PCL/PVP composite scaffolds with cell-scale fiber and ordered fiber spacing were printed. The proposed E-Jet printing method provides an alternative approach for the application of biopolymer materials in tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document