A tabu-search algorithm for scheduling jobs with precedence constraints on parallel machines

Author(s):  
Kailiang Xu ◽  
Rong Fei ◽  
Dahai He
2009 ◽  
Vol 26 (06) ◽  
pp. 817-829 ◽  
Author(s):  
XIAOFENG HU ◽  
JINGSONG BAO ◽  
YE JIN

This paper focuses on scheduling problem of a pipe-processing flowshop in a shipyard. The flowshop composes of five stages, including cutting, bending, welding preprocessing, argon-welding and CO 2-welding, and each stage consists of identical parallel machines. Since thousands of pipes are mounted on the hull block before erection, the pipe-processing scheduling is a critical task for shipbuilding to meet the due date of the block erection. A tabu search algorithm is developed for the scheduling problem with the objective of minimizing total tardiness. Computational experiments are performed on the collected real data. Results show that the proposed algorithm is efficient for this problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mohammed A. Noman ◽  
Moath Alatefi ◽  
Abdulrahman M. Al-Ahmari ◽  
Tamer Ali

Recently, several heuristics have been interested in scheduling problems, especially those that are difficult to solve via traditional methods, and these are called NP-hard problems. As a result, many methods have been proposed to solve the difficult scheduling problems; among those, effective methods are the tabu search algorithm (TS), which is characterized by its high ability to adapt to problems of the large size scale and ease of implementation and gives solution closest to the optimum, but even though those difficult problems are common in many industries, there are only a few numbers of previous studies interested in the scheduling of jobs on unrelated parallel machines. In this paper, a developed TS algorithm based on lower bound (LB) and exact algorithm (EA) solutions is proposed with the objective of minimizing the total completion time (makespan) of jobs on nonidentical parallel machines. The given solution via EA was suggested to enhance and assess the solution obtained from TS. Moreover, the LB algorithm was developed to evaluate the quality of the solution that is supposed to be obtained by the developed TS algorithm and, in addition, to reduce the period for searching for the optimal solution. Two numerical examples from previous studies from the literature have been solved using the developed TS algorithm. Findings show that the developed TS algorithm proved its superiority and speed in giving it the best solution compared to those solutions previously obtained from the literature.


2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


Networks ◽  
2021 ◽  
Vol 77 (2) ◽  
pp. 322-340 ◽  
Author(s):  
Richard S. Barr ◽  
Fred Glover ◽  
Toby Huskinson ◽  
Gary Kochenberger

2014 ◽  
Vol 24 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Baozhen Yao ◽  
Ping Hu ◽  
Mingheng Zhang ◽  
Maoqing Jin

Abstract Automated Incident Detection (AID) is an important part of Advanced Traffic Management and Information Systems (ATMISs). An automated incident detection system can effectively provide information on an incident, which can help initiate the required measure to reduce the influence of the incident. To accurately detect incidents in expressways, a Support Vector Machine (SVM) is used in this paper. Since the selection of optimal parameters for the SVM can improve prediction accuracy, the tabu search algorithm is employed to optimize the SVM parameters. The proposed model is evaluated with data for two freeways in China. The results show that the tabu search algorithm can effectively provide better parameter values for the SVM, and SVM models outperform Artificial Neural Networks (ANNs) in freeway incident detection.


Sign in / Sign up

Export Citation Format

Share Document