Wind Turbine Modeling Research Based on the Combination of SCADA and Vibration Signals

Author(s):  
Wu Xin ◽  
Su Liancheng
2013 ◽  
Vol 644 ◽  
pp. 312-316
Author(s):  
Chang Zheng Chen ◽  
Ping Ping Pan ◽  
Qiang Meng ◽  
Yan Ling Gu

The presence of irregularity in periodical vibration signals usually indicates the occurrence of wind turbine gearbox faults. Unfortunately, detecting the incipient faults is a difficult job because they are rather weak and often interfered by heavy noise and higher level macro-structural vibrations. Therefore, a proper signal processing method is necessary. We used the wavelet-based multifractal method to extract the impulsive features buried in noisy vibration signals. We first calculated the wavelet transform modulo maxima lines from the real vibration signals, then, obtained the singularity spectrum from the lines. The analysis results of the real signals showed that the proposed method can effectively extract weak fault features.


Author(s):  
Kyle Bassett ◽  
Rupp Carriveau ◽  
David S.-K. Ting

Structural health monitoring is a technique devised to monitor the structural conditions of a system in an attempt to take corrective measures before the system fails. A passive structural health monitoring technique is presented, which serves to leverage historic time series data in order to both detect and localize damage on a wind turbine blade aerodynamic model. First, vibration signals from the healthy system are recorded for various input conditions. The data is normalized and auto-regressive (AR) coefficients are determined in order to uniquely identify the normal behavior of the system for each input condition. This data is then stored in a healthy state database. When the structural condition of the system is unknown the vibration signals are acquired, normalized and identified by their AR coefficients. Damage is detected through the residual error which is calculated as the difference between the AR coefficients of the unknown and healthy structural conditions. This technique is tailored for wind turbines and the application of this approach is demonstrated in a wind tunnel using a small turbine blade held with four springs to create a dual degree-of-freedom system. The vibration signals from this system are characterized by free-stream speed. Damage is replicated through mass addition on each of the blades ends and is located by an increase in residual error from the accelerometer mounted closest to the damaged area. The outlined procedure and demonstration illustrate a single stage structural health monitoring technique that, when applied on a large scale, can avoid catastrophic turbine disasters and work to effectively reduce the maintenance costs and downtime of wind farm operations.


Author(s):  
Sofia Koukoura ◽  
Eric Bechhoefer ◽  
James Carroll ◽  
Alasdair McDonald

Abstract Vibration signals are widely used in wind turbine drivetrain condition monitoring with the aim of fault detection, optimization of maintenance actions and therefore reduction of operating costs. Signals are most commonly sampled by accelerometers at high frequency for a few seconds. The behavior of these signals varies significantly, even within the same turbine and depends on different parameters. The aim of this paper is to explore the effect of operational and environmental conditions on the vibration signals of wind turbine gearboxes. Parameters such as speed, power and yaw angle are taken into account and the change in vibration signals is examined. The study includes examples from real wind turbines of both normal operation and operation with known gearbox faults. The effects of varying operating conditions are removed using kalman filtering as a state observer. The findings of this paper will aid in understanding wind turbine gearbox vibration signals, making more informed decisions in the presence of faults and improving maintenance decisions.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 190 ◽  
Author(s):  
A. Joshuva ◽  
V. Sugumaran

This study is to identify whether the wind turbine blades are in good or faulty conditions. If faulty, then the objective to find which fault condition are the blades subjected to. The problem identification is carried out by machine learning approach using vibration signals through statistical features. In this study, a three bladed wind turbine was chosen and faults like blade cracks, hub-blade loose connection, blade bend, pitch angle twist and blade erosion were considered. Here, the study is carried out in three phases namely, feature extraction, feature selection and feature classification. In phase 1, the required statistical features are extracted from the vibration signals which obtained from the wind turbine through accelerometer. In phase 2, the most dominating or the relevant feature is selected from the extracted features using J48 decision tree algorithm. In phase 3, the selected features are classified using machine learning classifiers namely, K-star (KS), locally weighted learning (LWL), nearest neighbour (NN), k-nearest neighbours (kNN), instance based K-nearest using log and Gaussian weight kernels (IBKLG) and lazy Bayesian rules classifier (LBRC). The results were compared with respect to the classification accuracy and the computational time of the classifier.  


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6348
Author(s):  
Chao Zhang ◽  
Haoran Duan ◽  
Yu Xue ◽  
Biao Zhang ◽  
Bin Fan ◽  
...  

As the critical parts of wind turbines, rolling bearings are prone to faults due to the extreme operating conditions. To avoid the influence of the faults on wind turbine performance and asset damages, many methods have been developed to monitor the health of bearings by accurately analyzing their vibration signals. Stochastic resonance (SR)-based signal enhancement is one of effective methods to extract the characteristic frequencies of weak fault signals. This paper constructs a new SR model, which is established based on the joint properties of both Power Function Type Single-Well and Woods-Saxon (PWS), and used to make fault frequency easy to detect. However, the collected vibration signals usually contain strong noise interference, which leads to poor effect when using the SR analysis method alone. Therefore, this paper combines the Fourier Decomposition Method (FDM) and SR to improve the detection accuracy of bearing fault signals feature. Here, the FDM is an alternative method of empirical mode decomposition (EMD), which is widely used in nonlinear signal analysis to eliminate the interference of low-frequency coupled signals. In this paper, a new stochastic resonance model (PWS) is constructed and combined with FDM to enhance the vibration signals of the input and output shaft of the wind turbine gearbox bearing, make the bearing fault signals can be easily detected. The results show that the combination of the two methods can detect the frequency of a bearing failure, thereby reminding maintenance personnel to urgently develop a maintenance plan.


Author(s):  
Xueli An ◽  
Luoping Pan

For the unsteady characteristics of a fault vibration signal from a wind turbine rolling bearing, a bearing fault diagnosis method based on adaptive local iterative filtering and approximate entropy is proposed. The adaptive local iterative filtering method is used to decompose original vibration signals into a finite number of stationary components. The components which comprise major fault information are selected for further analysis. The approximate entropy of the selected components is calculated as a fault feature value and input to a fault classifier. The classifier is based on the nearest neighbor algorithm. The vibration signals from a spherical roller bearing on a wind turbine in its normal state, with an outer race fault, an inner race fault and a roller fault are analyzed. The results show that the proposed method can accurately and efficiently identify the fault modes present in the rolling bearings of a wind turbine.


2013 ◽  
Vol 644 ◽  
pp. 346-349
Author(s):  
Chang Zheng Chen ◽  
Yu Zhang ◽  
Quan Gu ◽  
Yan Ling Gu

It is difficult to obtain the obvious fault features of wind turbine, because the vibration signal of them are non-linear and non-stationary. To solve the problem, a multifractal analysis based on wavelet is presented in this research. The real signals of 1.5 MW wind turbine are studied by multifractal theory. The incipient fault features are extracted from the original signal. Using the Wavelet Transform Modulo Maxima Method, the multifractal was obtained. The results show that fault features of high rotational frequency of wind turbine are different from low rotational frequency, and the complexity of the vibration signals increases with the rotational frequency. These demonstrate the multifractal analysis is effective to extract the fault features of wind turbine generator.


Sign in / Sign up

Export Citation Format

Share Document