Temperature response analysis based on pulse width irradiation of 2.45 GHz microwave hyperthermia

Author(s):  
Imam Santoso ◽  
Thomas Sri Widodo ◽  
Adhi Susanto ◽  
Maesadjie Tjokronagoro
Author(s):  
Paulo C. C. Faria

Electroexplosive devices, EEDs or squibs (an electric resistance encapsulated by a primary explosive), fundamentally convert electrical energy into heat, solely to start off an explosive chemical reaction. Obviously, the EED activation shall not happen by accident or, even worse, by intentional exogenous influence. From an ordinary differential equation (ODE), which describes this device thermal behaviour for both continuous and pulsed electrical excitation, a remarkable, but certainly not intuitive, dependence of the temperature response on the heat transfer process time-constant is verified: the EED temperature profile dramatically changes as the time-constant spans a wide range of values, from much lesser than the pulse width to much greater than the pulse period. On the basis of this dependence, important recommendations, concerning the EED safety (and efficient) operation, are presented.


2013 ◽  
Vol 26 (18) ◽  
pp. 7023-7043 ◽  
Author(s):  
Patrick C. Taylor ◽  
Ming Cai ◽  
Aixue Hu ◽  
Jerry Meehl ◽  
Warren Washington ◽  
...  

Abstract Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr−1 CO2 increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO2 doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean.


2016 ◽  
Vol 73 (8) ◽  
pp. 3287-3303 ◽  
Author(s):  
Sergio A. Sejas ◽  
Ming Cai

Abstract Climate feedback processes are known to substantially amplify the surface warming response to an increase of greenhouse gases. When the forcing and feedbacks modify the temperature response they trigger temperature feedback loops that amplify the direct temperature changes due to the forcing and nontemperature feedbacks through the thermal–radiative coupling between the atmosphere and surface. This study introduces a new feedback-response analysis method that can isolate and quantify the effects of the temperature feedback loops of individual processes on surface temperature from their corresponding direct surface temperature responses. The authors analyze a 1% yr−1 increase of CO2 simulation of the NCAR CCSM4 at the time of CO2 doubling to illustrate the new method. The Planck sensitivity parameter, which indicates colder regions experience stronger surface temperature responses given the same change in surface energy flux, is the inherent factor that leads to polar warming amplification (PWA). This effect explains the PWA in the Antarctic, while the direct temperature response to the albedo and cloud feedbacks further explains the greater PWA of the Arctic. Temperature feedback loops, particularly the one associated with the albedo feedback, further amplify the Arctic surface warming relative to the tropics. In the tropics, temperature feedback loops associated with the CO2 forcing and water vapor feedback cause most of the surface warming. Overall, the temperature feedback is responsible for most of the surface warming globally, accounting for nearly 76% of the global-mean surface warming. This is 3 times larger than the next largest warming contribution, indicating that the temperature feedback loop is the preeminent contributor to the surface warming.


2007 ◽  
Vol 4 (5) ◽  
pp. 803-816 ◽  
Author(s):  
C. M. J. Jacobs ◽  
A. F. G. Jacobs ◽  
F. C. Bosveld ◽  
D. M. D. Hendriks ◽  
A. Hensen ◽  
...  

Abstract. An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites: four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site, using the eddy-covariance (EC) technique, but in different years. The NEE does not include any import or export other than CO2. The photosynthesis-light response analysis technique is used along with the respiration-temperature response technique to partition NEE into Gross Primary Production (GPP) and Ecosystem Respiration (Re) and to obtain the eco-physiological characteristics of the sites at the field scale. Annual sums of NEE, GPP and Re are then estimated using the fitted response curves with observed radiation and air temperature from a meteorological site in the centre of The Netherlands as drivers. These calculations are carried out for four years (2002–2005). Land use and management histories are not considered. The estimated annual Re for all individual sites is more or less constant per site and the average for all sites amounts to 1390±30 gC m−2 a−1. The narrow uncertainty band (±2%) reflects the small differences in the mean annual air temperature. The mean annual GPP was estimated to be 1325 g C m−2 a−1, and displays a much higher standard deviation, of ±110 gC m−2 a−1 (8%), which reflects the relatively large variation in annual solar radiation. The mean annual NEE amounts to –65±85 gC m−2 a−1. From two sites, four-year records of CO2 flux were available and analyzed (2002–2005). Using the weather record of 2005 with optimizations from the other years, the standard deviation of annual GPP was estimated to be 171–206 gC m−2 a−1 (8–14%), of annual Re 227–247 gC m−2 a−1 (14–16%) and of annual NEE 176–276 gC m−2 a−1. The inter-site standard deviation was higher for GPP and Re, 534 gC m−2 a−1 (37.3%) and 486 gC m−2 a−1 (34.8%), respectively. However, the inter-site standard deviation of NEE was similar to the interannual one, amounting to 207 gC m−2 a−1. Large differences occur due to soil type. The grasslands on organic (peat) soils show a mean net release of CO2 of 220±90 g C m−2 a−1 while the grasslands on mineral (clay and sand) soils show a mean net uptake of CO2 of 90±90 g C m−2 a−1. If a weighing with the fraction of grassland on organic (20%) and mineral soils (80%) is applied, an average NEE of 28 ±90 g C m−2 a−1 is found. The results from the analysis illustrate the need for regionally specific and spatially explicit CO2 emission estimates from grassland.


Author(s):  
Zhang Di ◽  
Liu Xin ◽  
Wang Zhe ◽  
Wang Guodong ◽  
Ni Chenxiao ◽  
...  

CAP1400 is the large advanced passive demonstration plant, which is one of the National Science and Technology Major Projects. CAP1400 is an innovative design and development based on AP1000 advanced design philosophy with passive safety features. While keeping the same safety level as AP1000, CAP1400 aims to improve plant economy by means of enlargement of reactor core, increase of unit power output and optimization of plant overall design. The CAP1400 nuclear power plant uses the passive containment cooling system (PCS) to remove heat from the containment after accidents when high mass and energy fluid is released from primary or secondary systems. On account of the more mass and energy release and the internal structures design changes of CAP1400, the operating parameters may exceed the range of AP600 and AP1000 containment tests. In order to further study the performance of the CAP1400 PCS system, a series of verification tests have been carried out in the National PWR Project. This paper describes the background of the test setup, the really focused issues of the experiment and the main test results. The experimental data from separate effect tests and large scaled test were analyzed and evaluated in depth. The performance of the PCS was studied, including water film coverage outside the containment shell, water film evaporation and heat transfer characteristics, air natural circulation and convection outside the containment vessel, convection and condensation of the air / steam mixture on the inner surface of the containment vessel, as well as the overall performance of PCS systems. The results show that the important correlations applied in CAP1400 containment pressure and temperature response analysis could predict the heat and mass transfer reasonably and the envelope factors used for safety analysis are conservative. Parameters affecting the containment pressure and temperature have been investigated, and the reasonability and conservation of containment thermal and hydraulic analysis code has been evaluated by comparing the calculated results with the measured results. The results show that containment analysis code could simulate the important heat transfer phenomena of the test containment well and predict the temperature and pressure response reasonably with some conservation. Containment pressure and temperature response analysis after typical design basis accident analysis have been preformed, and the results show that the CAP1400 PCS is sufficient to remove the heat from the containment which ensure the safety of the plant. All of the results provide firm basis for the development of CAP1400 and sufficient support for the safety review. This work also lays the foundation for the further development of relevant analytical tools and the development of advanced and passive technologies with higher power levels.


Sign in / Sign up

Export Citation Format

Share Document