Implicit human intention inference through gaze cues for people with limited motion ability

Author(s):  
Songpo Li ◽  
Xiaoli Zhang
2000 ◽  
Vol 5 (2) ◽  
pp. 3-3
Author(s):  
Christopher R. Brigham ◽  
James B. Talmage

Abstract Lesions of the peripheral nervous system (PNS), whether due to injury or illness, commonly result in residual symptoms and signs and, hence, permanent impairment. The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides) describes procedures for rating upper extremity neural deficits in Chapter 3, The Musculoskeletal System, section 3.1k; Chapter 4, The Nervous System, section 4.4 provides additional information and an example. The AMA Guides also divides PNS deficits into sensory and motor and includes pain within the former. The impairment estimates take into account typical manifestations such as limited motion, atrophy, and reflex, trophic, and vasomotor deficits. Lesions of the peripheral nervous system may result in diminished sensation (anesthesia or hypesthesia), abnormal sensation (dysesthesia or paresthesia), or increased sensation (hyperesthesia). Lesions of motor nerves can result in weakness or paralysis of the muscles innervated. Spinal nerve deficits are identified by sensory loss or pain in the dermatome or weakness in the myotome supplied. The steps in estimating brachial plexus impairment are similar to those for spinal and peripheral nerves. Evaluators should take care not to rate the same impairment twice, eg, rating weakness resulting from a peripheral nerve injury and the joss of joint motion due to that weakness.


Author(s):  
Matthew V. Law ◽  
Amritansh Kwatra ◽  
Nikhil Dhawan ◽  
Matthew Einhorn ◽  
Amit Rajesh ◽  
...  
Keyword(s):  

2021 ◽  
pp. 1-16
Author(s):  
First A. Wenbo Huang ◽  
Second B. Changyuan Wang ◽  
Third C. Hongbo Jia

Traditional intention inference methods rely solely on EEG, eye movement or tactile feedback, and the recognition rate is low. To improve the accuracy of a pilot’s intention recognition, a human-computer interaction intention inference method is proposed in this paper with the fusion of EEG, eye movement and tactile feedback. Firstly, EEG signals are collected near the frontal lobe of the human brain to extract features, which includes eight channels, i.e., AF7, F7, FT7, T7, AF8, F8, FT8, and T8. Secondly, the signal datas are preprocessed by baseline removal, normalization, and least-squares noise reduction. Thirdly, the support vector machine (SVM) is applied to carry out multiple binary classifications of the eye movement direction. Finally, the 8-direction recognition of the eye movement direction is realized through data fusion. Experimental results have shown that the accuracy of classification with the proposed method can reach 75.77%, 76.7%, 83.38%, 83.64%, 60.49%,60.93%, 66.03% and 64.49%, respectively. Compared with traditional methods, the classification accuracy and the realization process of the proposed algorithm are higher and simpler. The feasibility and effectiveness of EEG signals are further verified to identify eye movement directions for intention recognition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takao Fukui ◽  
Mrinmoy Chakrabarty ◽  
Misako Sano ◽  
Ari Tanaka ◽  
Mayuko Suzuki ◽  
...  

AbstractEye movements toward sequentially presented face images with or without gaze cues were recorded to investigate whether those with ASD, in comparison to their typically developing (TD) peers, could prospectively perform the task according to gaze cues. Line-drawn face images were sequentially presented for one second each on a laptop PC display, and the face images shifted from side-to-side and up-and-down. In the gaze cue condition, the gaze of the face image was directed to the position where the next face would be presented. Although the participants with ASD looked less at the eye area of the face image than their TD peers, they could perform comparable smooth gaze shift to the gaze cue of the face image in the gaze cue condition. This appropriate gaze shift in the ASD group was more evident in the second half of trials in than in the first half, as revealed by the mean proportion of fixation time in the eye area to valid gaze data in the early phase (during face image presentation) and the time to first fixation on the eye area. These results suggest that individuals with ASD may benefit from the short-period trial experiment by enhancing the usage of gaze cue.


Sign in / Sign up

Export Citation Format

Share Document