High-resolution 3D reconstruction for complex color scenes with structured light

Author(s):  
Weidong Hu ◽  
Mingying Gong ◽  
Yanhui Hong ◽  
Lifeng Sun ◽  
Shiqiang Yang
2021 ◽  
Author(s):  
Karl‐Heinz Herrmann ◽  
Franziska Hoffmann ◽  
Günther Ernst ◽  
David Pertzborn ◽  
Daniela Pelzel ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4819
Author(s):  
Yikang Li ◽  
Zhenzhou Wang

Single-shot 3D reconstruction technique is very important for measuring moving and deforming objects. After many decades of study, a great number of interesting single-shot techniques have been proposed, yet the problem remains open. In this paper, a new approach is proposed to reconstruct deforming and moving objects with the structured light RGB line pattern. The structured light RGB line pattern is coded using parallel red, green, and blue lines with equal intervals to facilitate line segmentation and line indexing. A slope difference distribution (SDD)-based image segmentation method is proposed to segment the lines robustly in the HSV color space. A method of exclusion is proposed to index the red lines, the green lines, and the blue lines respectively and robustly. The indexed lines in different colors are fused to obtain a phase map for 3D depth calculation. The quantitative accuracies of measuring a calibration grid and a ball achieved by the proposed approach are 0.46 and 0.24 mm, respectively, which are significantly lower than those achieved by the compared state-of-the-art single-shot techniques.


2021 ◽  
Vol 13 (11) ◽  
pp. 2185
Author(s):  
Yu Tao ◽  
Sylvain Douté ◽  
Jan-Peter Muller ◽  
Susan J. Conway ◽  
Nicolas Thomas ◽  
...  

We introduce a novel ultra-high-resolution Digital Terrain Model (DTM) processing system using a combination of photogrammetric 3D reconstruction, image co-registration, image super-resolution restoration, shape-from-shading DTM refinement, and 3D co-alignment methods. Technical details of the method are described, and results are demonstrated using a 4 m/pixel Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) panchromatic image and an overlapping 6 m/pixel Mars Reconnaissance Orbiter Context Camera (CTX) stereo pair to produce a 1 m/pixel CaSSIS Super-Resolution Restoration (SRR) DTM for different areas over Oxia Planum on Mars—the future ESA ExoMars 2022 Rosalind Franklin rover’s landing site. Quantitative assessments are made using profile measurements and the counting of resolvable craters, in comparison with the publicly available 1 m/pixel High-Resolution Imaging Experiment (HiRISE) DTM. These assessments demonstrate that the final resultant 1 m/pixel CaSSIS DTM from the proposed processing system has achieved comparable and sometimes more detailed 3D reconstruction compared to the overlapping HiRISE DTM.


2006 ◽  
Author(s):  
Qinghua Wu ◽  
Wei Li ◽  
Wenjun Wu ◽  
Ming Zhong ◽  
Tao He ◽  
...  

2011 ◽  
Vol 17 (S2) ◽  
pp. 966-967 ◽  
Author(s):  
R Schalek ◽  
N Kasthuri ◽  
K Hayworth ◽  
D Berger ◽  
J Tapia ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


2018 ◽  
Vol 26 (6) ◽  
pp. 7598 ◽  
Author(s):  
Zewei Cai ◽  
Xiaoli Liu ◽  
Xiang Peng ◽  
Bruce Z. Gao

Sign in / Sign up

Export Citation Format

Share Document