Radiation Effect on a High Efficiency Double Drift Region 4H-SiC Terahertz IMPATT Diode

Author(s):  
M. Mukherjee ◽  
N. Mazumder ◽  
A. Dasgupta
2019 ◽  
Vol 23 (1) ◽  
pp. 11
Author(s):  
Sanjay Chouhan ◽  
Leeladhar Malviya

Compact antenna, appropriate gain, high efficiency, wide bandwidth, minimum envelope correlation coefficient (ECC), large total active reflection coefficient (TARC) bandwidth, and low specific absorption rate (SAR) are certain conditions set on the present/future generations of wireless communication antennas with the lowest cost of implementation. A compact low profile folded MIMO antenna has been designed using CST tool to cover application at 5.2 GHz. The reported folded MIMO antenna has bandwidth of 600 MHz (5.0-5.6 GHz) and has fractional bandwidth of 11.32 % along with the compact size of 37.5 × 17.0 mm2 . The reported MIMO antenna has ECC of < 10-2. The proposed folded MIMO antenna resonates at 5.2 GHz and has return loss of -44.0 dB. The inter-port isolation in antenna ports is > 11.50 dB in the defined frequency band. The response of TARC shows > 580 MHz of bandwidth with pair of excitation angles at antenna ports. The gain of antenna is > 3.0 dBi in the operating band. The reported radiating geometry makes the design very compact. To check the radiation effect on human body in different positions, the SAR is evaluated for indoor environment.


1973 ◽  
Vol 9 (8-9) ◽  
pp. 173 ◽  
Author(s):  
C. Kim ◽  
R. Steele ◽  
R. Bierig

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 919
Author(s):  
Yang Dai ◽  
Qingsong Ye ◽  
Jiangtao Dang ◽  
Zhaoyang Lu ◽  
Weiwei Zhang ◽  
...  

Nowadays, the immature p-GaN processes cannot meet the manufacturing requirements of GaN impact ionization avalanche transit time (IMPATT) diodes. Against this backdrop, the performance of wide-bandgap p-SiC/n-GaN heterojunction double-drift region (DDR) IMPATT diode is investigated in this paper for the first time. The direct-current (DC) steady-state, small-signal and large-signal characteristics are numerically simulated. The results show that compared with the conventional GaN single-drift region (SDR) IMPATT diode, the performance of the p-SiC/n-GaN DDR IMPATT proposed in this design, such as breakdown voltage, negative conductance, voltage modulation factor, radio frequency (RF) power and DC-RF conversion efficiency have been significantly improved. At the same time, the structure proposed in this design has a larger frequency bandwidth. Due to its greater potential in the RF power density, which is 1.97 MW/cm2 in this study, indicates that the p-SiC/n-GaN heterojunction provides new possibilities for the design and manufacture of IMPATT diode.


1975 ◽  
Vol 63 (11) ◽  
pp. 1613-1615
Author(s):  
A. Lekholm ◽  
F. Sellberg ◽  
P. Weissglas ◽  
G. Andersson

2005 ◽  
Author(s):  
H. Kondoh ◽  
J. Berenz ◽  
T. Hierl ◽  
G.C. Dalman ◽  
C.A. Lee
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2180
Author(s):  
Yang Dai ◽  
Jiangtao Dang ◽  
Qingsong Ye ◽  
Zhaoyang Lu ◽  
Shi Pu ◽  
...  

This paper proposes a 6H-materials silicon carbide (SiC)/gallium nitride (GaN) heterogeneous p-n structure to replace the GaN homogenous p-n junction to manufacture an impact-ionization-avalanche-transit-time (IMPATT) diode, and the performance of this 6H-SiC/GaN heterojunction single-drift-region (SDR) IMPATT diode is simulated at frequencies above 100 GHz. The performance parameters of the studied device were simulated and compared with the conventional GaN p-n IMPATT diode. The results show that the p-SiC/n-GaN IMPATT performance is significantly improved, and this is reflected in the enhanced characteristics in terms of operating frequency, rf power, and dc-rf conversion efficiency by the two mechanisms. One such characteristic that the new structure has an excessive avalanche injection of electrons in the p-type SiC region owing to the ionization characteristics of the SiC material, while another is a lower electric field distribution in the drift region, which can induce a higher electron velocity and larger current in the structure. The work provides a reference to obtain a deeper understanding of the mechanism and design of IMPATT devices based on wide-bandgap semiconductor materials.


Sign in / Sign up

Export Citation Format

Share Document