A reliable fifteen-percent-efficiency Silicon double-drift-region IMPATT diode

1975 ◽  
Vol 63 (11) ◽  
pp. 1613-1615
Author(s):  
A. Lekholm ◽  
F. Sellberg ◽  
P. Weissglas ◽  
G. Andersson
Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 919
Author(s):  
Yang Dai ◽  
Qingsong Ye ◽  
Jiangtao Dang ◽  
Zhaoyang Lu ◽  
Weiwei Zhang ◽  
...  

Nowadays, the immature p-GaN processes cannot meet the manufacturing requirements of GaN impact ionization avalanche transit time (IMPATT) diodes. Against this backdrop, the performance of wide-bandgap p-SiC/n-GaN heterojunction double-drift region (DDR) IMPATT diode is investigated in this paper for the first time. The direct-current (DC) steady-state, small-signal and large-signal characteristics are numerically simulated. The results show that compared with the conventional GaN single-drift region (SDR) IMPATT diode, the performance of the p-SiC/n-GaN DDR IMPATT proposed in this design, such as breakdown voltage, negative conductance, voltage modulation factor, radio frequency (RF) power and DC-RF conversion efficiency have been significantly improved. At the same time, the structure proposed in this design has a larger frequency bandwidth. Due to its greater potential in the RF power density, which is 1.97 MW/cm2 in this study, indicates that the p-SiC/n-GaN heterojunction provides new possibilities for the design and manufacture of IMPATT diode.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2180
Author(s):  
Yang Dai ◽  
Jiangtao Dang ◽  
Qingsong Ye ◽  
Zhaoyang Lu ◽  
Shi Pu ◽  
...  

This paper proposes a 6H-materials silicon carbide (SiC)/gallium nitride (GaN) heterogeneous p-n structure to replace the GaN homogenous p-n junction to manufacture an impact-ionization-avalanche-transit-time (IMPATT) diode, and the performance of this 6H-SiC/GaN heterojunction single-drift-region (SDR) IMPATT diode is simulated at frequencies above 100 GHz. The performance parameters of the studied device were simulated and compared with the conventional GaN p-n IMPATT diode. The results show that the p-SiC/n-GaN IMPATT performance is significantly improved, and this is reflected in the enhanced characteristics in terms of operating frequency, rf power, and dc-rf conversion efficiency by the two mechanisms. One such characteristic that the new structure has an excessive avalanche injection of electrons in the p-type SiC region owing to the ionization characteristics of the SiC material, while another is a lower electric field distribution in the drift region, which can induce a higher electron velocity and larger current in the structure. The work provides a reference to obtain a deeper understanding of the mechanism and design of IMPATT devices based on wide-bandgap semiconductor materials.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Moumita Mukherjee ◽  
Nilratan Mazumder ◽  
Sitesh Kumar Roy

The dynamic performance of wide-bandgap 4H-SiC based double drift region (p++ p n n++) IMPATT diode is simulated for the first time at terahertz frequency (0.7 Terahertz) region. The simulation experiment establishes the potential of SiC based IMPATT diode as a high power (2.5×1011 Wm−2) terahertz source. The parasitic series resistance in the device is found to reduce the RF power output by 10.7%. The effects of external radiation on the simulated diode are also studied. It is found that (i) the negative conductance and (ii) the negative resistance of the diode decrease, while, the frequency of operation and the quality factor shift upward under photoillumination. Holes in 4H-SiC based IMPATT are found to dominate the modulation activities. The inequality in the magnitude of electron and hole ionization rates in the semiconductors may be correlated with these findings.


1969 ◽  
Vol 5 (21) ◽  
pp. 521 ◽  
Author(s):  
M.T. Vlaardingerbroek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document