scholarly journals Study of p-SiC/n-GaN Hetero-Structural Double-Drift Region IMPATT Diode

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 919
Author(s):  
Yang Dai ◽  
Qingsong Ye ◽  
Jiangtao Dang ◽  
Zhaoyang Lu ◽  
Weiwei Zhang ◽  
...  

Nowadays, the immature p-GaN processes cannot meet the manufacturing requirements of GaN impact ionization avalanche transit time (IMPATT) diodes. Against this backdrop, the performance of wide-bandgap p-SiC/n-GaN heterojunction double-drift region (DDR) IMPATT diode is investigated in this paper for the first time. The direct-current (DC) steady-state, small-signal and large-signal characteristics are numerically simulated. The results show that compared with the conventional GaN single-drift region (SDR) IMPATT diode, the performance of the p-SiC/n-GaN DDR IMPATT proposed in this design, such as breakdown voltage, negative conductance, voltage modulation factor, radio frequency (RF) power and DC-RF conversion efficiency have been significantly improved. At the same time, the structure proposed in this design has a larger frequency bandwidth. Due to its greater potential in the RF power density, which is 1.97 MW/cm2 in this study, indicates that the p-SiC/n-GaN heterojunction provides new possibilities for the design and manufacture of IMPATT diode.

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2180
Author(s):  
Yang Dai ◽  
Jiangtao Dang ◽  
Qingsong Ye ◽  
Zhaoyang Lu ◽  
Shi Pu ◽  
...  

This paper proposes a 6H-materials silicon carbide (SiC)/gallium nitride (GaN) heterogeneous p-n structure to replace the GaN homogenous p-n junction to manufacture an impact-ionization-avalanche-transit-time (IMPATT) diode, and the performance of this 6H-SiC/GaN heterojunction single-drift-region (SDR) IMPATT diode is simulated at frequencies above 100 GHz. The performance parameters of the studied device were simulated and compared with the conventional GaN p-n IMPATT diode. The results show that the p-SiC/n-GaN IMPATT performance is significantly improved, and this is reflected in the enhanced characteristics in terms of operating frequency, rf power, and dc-rf conversion efficiency by the two mechanisms. One such characteristic that the new structure has an excessive avalanche injection of electrons in the p-type SiC region owing to the ionization characteristics of the SiC material, while another is a lower electric field distribution in the drift region, which can induce a higher electron velocity and larger current in the structure. The work provides a reference to obtain a deeper understanding of the mechanism and design of IMPATT devices based on wide-bandgap semiconductor materials.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
Moumita Mukherjee ◽  
Nilratan Mazumder ◽  
Sitesh Kumar Roy

The dynamic performance of wide-bandgap 4H-SiC based double drift region (p++ p n n++) IMPATT diode is simulated for the first time at terahertz frequency (0.7 Terahertz) region. The simulation experiment establishes the potential of SiC based IMPATT diode as a high power (2.5×1011 Wm−2) terahertz source. The parasitic series resistance in the device is found to reduce the RF power output by 10.7%. The effects of external radiation on the simulated diode are also studied. It is found that (i) the negative conductance and (ii) the negative resistance of the diode decrease, while, the frequency of operation and the quality factor shift upward under photoillumination. Holes in 4H-SiC based IMPATT are found to dominate the modulation activities. The inequality in the magnitude of electron and hole ionization rates in the semiconductors may be correlated with these findings.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Bhadrani Banerjee ◽  
Anvita Tripathi ◽  
Adrija Das ◽  
Kumari Alka Singh ◽  
Aritra Acharyya ◽  
...  

The authors have carried out the large-signal (L-S) simulation of double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on 111, 100, and 110 oriented GaAs. A nonsinusoidal voltage excited (NSVE) L-S simulation technique is used to investigate both the static and L-S performance of the above-mentioned devices designed to operate at millimeter-wave (mm-wave) atmospheric window frequencies, such as 35, 94, 140, and 220 GHz. Results show that 111 oriented GaAs diodes are capable of delivering maximum RF power with highest DC to RF conversion efficiency up to 94 GHz; however, the L-S performance of 110 oriented GaAs diodes exceeds their other counterparts while the frequency of operation increases above 94 GHz. The results presented in this paper will be helpful for the future experimentalists to choose the GaAs substrate of appropriate orientation to fabricate DDR GaAs IMPATT diodes at mm-wave frequencies.


2013 ◽  
Vol 5 (5) ◽  
pp. 567-578 ◽  
Author(s):  
Aritra Acharyya ◽  
Jit Chakraborty ◽  
Kausik Das ◽  
Subir Datta ◽  
Pritam De ◽  
...  

Large-signal (L-S) characterization of double-drift region (DDR) impact avalanche transit time (IMPATT) devices based on silicon designed to operate at different millimeter-wave (mm-wave) and terahertz (THz) frequencies up to 0.5 THz is carried out in this paper using an L-S simulation method developed by the authors based on non-sinusoidal voltage excitation (NSVE) model. L-S simulation results show that the device is capable of delivering peak RF power of 657.64 mW with 8.25% conversion efficiency at 94 GHz for 50% voltage modulation; whereas RF power output and efficiency reduce to 89.61 mW and 2.22% respectively at 0.5 THz for same voltage modulation. Effect of parasitic series resistance on the L-S properties of DDR Si IMPATTs is also investigated, which shows that the decrease in RF power output and conversion efficiency of the device due to series resistance is more pronounced at higher frequencies especially at the THz regime. The NSVE L-S simulation results are compared with well established double-iterative field maximum (DEFM) small-signal (S-S) simulation results and finally both are compared with the experimental results. The comparative study shows that the proposed NSVE L-S simulation results are in closer agreement with experimental results as compared to those of DEFM S-S simulation.


2008 ◽  
Vol 600-603 ◽  
pp. 1187-1190 ◽  
Author(s):  
Q. Jon Zhang ◽  
Charlotte Jonas ◽  
Joseph J. Sumakeris ◽  
Anant K. Agarwal ◽  
John W. Palmour

DC characteristics of 4H-SiC p-channel IGBTs capable of blocking -12 kV and conducting -0.4 A (-100 A/cm2) at a forward voltage of -5.2 V at 25°C are demonstrated for the first time. A record low differential on-resistance of 14 mW×cm2 was achieved with a gate bias of -20 V indicating a strong conductivity modulation in the p-type drift region. A moderately doped current enhancement layer grown on the lightly doped drift layer effectively reduces the JFET resistance while maintains a high carrier lifetime for conductivity modulation. A hole MOS channel mobility of 12.5 cm2/V-s at -20 V of gate bias was measured with a MOS threshold voltage of -5.8 V. The blocking voltage of -12 kV was achieved by Junction Termination Extension (JTE).


1998 ◽  
Vol 512 ◽  
Author(s):  
B. Jayant Baliga

ABSTRACTProgress made in the development of high performance power rectifiers and switches from silicon carbide are reviewed with emphasis on approaching the 100-fold reduction in the specific on-resistance of the drift region when compared with silicon devices with the same breakdown voltage. The highlights are: (a) Recently completed measurements of impact ionization coefficients in SiC indicate an even higher Baliga's figure of merit than projected earlier. (b) The commonly reported negative temperature co-efficient for breakdown voltage in SiC devices has been shown to arise at defects, allaying concerns that this may be intrinsic to the material. (c) Based upon fundamental considerations, it has been found that Schottky rectifiers offer superior on-state voltage drop than P-i-N rectifiers for reverse blocking voltages below 3000 volts. (d) Nearly ideal breakdown voltage has been experimentally obtained for Schottky diodes using an argon implanted edge termination. (e) Planar ion-implanted junctions have been successfully fabricated using oxide as a mask with high breakdown voltage and low leakage currents by using a filed plate edge termination. (f) High inversion layer mobility has been experimentally demonstrated on both 6H and 4H-SiC by using a deposited oxide layer as gate dielectric. (g) A novel, high-voltage, normally-off, accumulation-channel, MOSFET has been proposed and demonstrated with 50x lower specific on-resistance than silicon devices in spite of using logic-level gate drive voltages. These results indicate that SiC based power devices could become commercially viable in the 21st century if cost barriers can be overcome.


Sign in / Sign up

Export Citation Format

Share Document