A study on feature extraction of parallel immune genetic clustering algorithm based on clustering center optimization

Author(s):  
Juan Zou ◽  
Jinhua Zheng ◽  
Jingye Zhou ◽  
Cheng Deng
2021 ◽  
pp. 1-14
Author(s):  
Yujia Qu ◽  
Yuanjun Wang

BACKGROUND: The corpus callosum in the midsagittal plane plays a crucial role in the early diagnosis of diseases. When the anisotropy of the diffusion tensor in the midsagittal plane is calculated, the anisotropy of corpus callosum is close to that of the fornix, which leads to blurred boundary of the segmentation region. OBJECTIVE: To apply a fuzzy clustering algorithm combined with new spatial information to achieve accurate segmentation of the corpus callosum in the midsagittal plane in diffusion tensor images. METHODS: In this algorithm, a fixed region of interest is selected from the midsagittal plane, and the anisotropic filtering algorithm based on tensor is implemented by replacing the gradient direction of the structural tensor with an eigenvector, thus filtering the diffusion tensor of region of interest. Then, the iterative clustering center based on K-means clustering is used as the initial clustering center of tensor fuzzy clustering algorithm. Taking filtered diffusion tensor as input data and different metrics as similarity measures, the neighborhood diffusion tensor pixel calculation method of Log Euclidean framework is introduced in the membership function calculation, and tensor fuzzy clustering algorithm is proposed. In this study, MGH35 data from the Human Connectome Project (HCP) are tested and the variance, accuracy and specificity of the experimental results are discussed. RESULTS: Segmentation results of three groups of subjects in MGH35 data are reported. The average segmentation accuracy is 97.34%, and the average specificity is 98.43%. CONCLUSIONS: When segmenting the corpus callosum of diffusion tensor imaging, our method cannot only effective denoise images, but also achieve high accuracy and specificity.


2007 ◽  
Vol 16 (06) ◽  
pp. 919-934
Author(s):  
YONGGUO LIU ◽  
XIAORONG PU ◽  
YIDONG SHEN ◽  
ZHANG YI ◽  
XIAOFENG LIAO

In this article, a new genetic clustering algorithm called the Improved Hybrid Genetic Clustering Algorithm (IHGCA) is proposed to deal with the clustering problem under the criterion of minimum sum of squares clustering. In IHGCA, the improvement operation including five local iteration methods is developed to tune the individual and accelerate the convergence speed of the clustering algorithm, and the partition-absorption mutation operation is designed to reassign objects among different clusters. By experimental simulations, its superiority over some known genetic clustering methods is demonstrated.


Author(s):  
Ke Li ◽  
Yalei Wu ◽  
Shimin Song ◽  
Yi sun ◽  
Jun Wang ◽  
...  

The measurement of spacecraft electrical characteristics and multi-label classification issues are generally including a large amount of unlabeled test data processing, high-dimensional feature redundancy, time-consumed computation, and identification of slow rate. In this paper, a fuzzy c-means offline (FCM) clustering algorithm and the approximate weighted proximal support vector machine (WPSVM) online recognition approach have been proposed to reduce the feature size and improve the speed of classification of electrical characteristics in the spacecraft. In addition, the main component analysis for the complex signals based on the principal component feature extraction is used for the feature selection process. The data capture contribution approach by using thresholds is furthermore applied to resolve the selection problem of the principal component analysis (PCA), which effectively guarantees the validity and consistency of the data. Experimental results indicate that the proposed approach in this paper can obtain better fault diagnosis results of the spacecraft electrical characteristics’ data, improve the accuracy of identification, and shorten the computing time with high efficiency.


2013 ◽  
Vol 756-759 ◽  
pp. 3231-3235
Author(s):  
Xue Mei Wang ◽  
Jin Bo Wang

According to the defects of classical k-means clustering algorithm such as sensitive to the initial clustering center selection, the poor global search ability, falling into the local optimal solution. A differential evolution algorithm which was a kind of a heuristic global optimization algorithm based on population was introduced in this article, then put forward an improved differential evolution algorithm combined with k-means clustering algorithm at the same time. The experiments showed that the method has solved initial centers optimization problem of k-means clustering algorithm well, had a better searching ability,and more effectively improved clustering quality and convergence speed.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3673 ◽  
Author(s):  
Zhili Long ◽  
Ronghua He ◽  
Yuxiang He ◽  
Haoyao Chen ◽  
Zuohua Li

This paper presents a modeling approach to feature classification and environment mapping for indoor mobile robotics via a rotary ultrasonic array and fuzzy modeling. To compensate for the distance error detected by the ultrasonic sensor, a novel feature extraction approach termed “minimum distance of point” (MDP) is proposed to determine the accurate distance and location of target objects. A fuzzy model is established to recognize and classify the features of objects such as flat surfaces, corner, and cylinder. An environmental map is constructed for automated robot navigation based on this fuzzy classification, combined with a cluster algorithm and least-squares fitting. Firstly, the platform of the rotary ultrasonic array is established by using four low-cost ultrasonic sensors and a motor. Fundamental measurements, such as the distance of objects at different rotary angles and with different object materials, are carried out. Secondly, the MDP feature extraction algorithm is proposed to extract precise object locations. Compared with the conventional range of constant distance (RCD) method, the MDP method can compensate for errors in feature location and feature matching. With the data clustering algorithm, a range of ultrasonic distances is attained and used as the input dataset. The fuzzy classification model—including rules regarding data fuzzification, reasoning, and defuzzification—is established to effectively recognize and classify the object feature types. Finally, accurate environment mapping of a service robot, based on MDP and fuzzy modeling of the measurements from the ultrasonic array, is demonstrated. Experimentally, our present approach can realize environment mapping for mobile robotics with the advantages of acceptable accuracy and low cost.


Author(s):  
Abbas F. H. Alharan ◽  
Hayder K. Fatlawi ◽  
Nabeel Salih Ali

<p>Computer vision and pattern recognition applications have been counted serious research trends in engineering technology and scientific research content. These applications such as texture image analysis and its texture feature extraction. Several studies have been done to obtain accurate results in image feature extraction and classifications, but most of the extraction and classification studies have some shortcomings. Thus, it is substantial to amend the accuracy of the classification via minify the dimension of feature sets. In this paper, presents a cluster-based feature selection approach to adopt more discriminative subset texture features based on three different texture image datasets. Multi-step are conducted to implement the proposed approach. These steps involve texture feature extraction via Gray Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) and Gabor filter. The second step is feature selection by using K-means clustering algorithm based on five feature evaluation metrics which are infogain, Gain ratio, oneR, ReliefF, and symmetric. Finally, K-Nearest Neighbor (KNN), Naive Bayes (NB) and Support Vector Machine (SVM) classifiers are used to evaluate the proposed classification performance and accuracy. Research achieved better classification accuracy and performance using KNN and NB classifiers that were 99.9554% for Kelberg dataset and 99.0625% for SVM in Brodatz-1 and Brodatz-2 datasets consecutively. Conduct a comparison to other studies to give a unified view of the quality of the results and identify the future research directions.</p>


Effective software system must advance to stay pertinent, however this procedure of development can cause the product design to rot and prompt essentially diminished efficiency and even dropped projects. Remodularization tasks can be performed to fix the structure of a software system and evacuate the disintegration brought about by programming advancement. Software remodularization comprises in rearranging software entities into modules to such an extent that sets of substances having a place with similar modules are more comparable than those having a place with various modules.However, re-modularizing systems automatically is challenging in order to enhance their sustainability. In this paper, we have introduced a procedure of automatic software remodularization that helps software maintainers to enhance the software modularization quality by assessing the coupling and attachment among programming components. For precision coupling measures, the proposed technology uses structural coupling measurements. The proposed methodology utilizes tallying of class' part capacities utilized by a given class as a basic coupling measure among classes. The interaction between class files measures structural connections between software elements (classes). In this paper, probability based remodularization (PBR) approach has been proposed to remodularize the software systems. The file ordering process is done by performing probability based approach and remodularization is done based on the dependency strength or connectivity among the files. The proposed technique is experimented on seven software systems. The efficiency is measured by utilizing Turbo Modularization Quality (MQ) that promotes edge weighing module dependence graph (MDG). It very well may be presumed that when comparing performance with the subsisting techniques, for instance, Bunch – GA (Genetic Algorithm), DAGC (Development of Genetic Clustering Algorithm) and Estimation of Distribution Algorithm (EDA), the proposed methodology has greater Turbo MQ value and lesser time complexity with Bunch-GA in the software systems assessed


Sign in / Sign up

Export Citation Format

Share Document