Application of Random Forest and Back Propagation Neural Network in Estimating Radiation-Based Reference Evapotranspiration Model in Gansu Province

Author(s):  
Sheng Chen ◽  
Miao Li ◽  
Lei Chen ◽  
Shide Song ◽  
Zhenxin Yang
Author(s):  
Rasheed Adekunle Adebayo ◽  
Mehluli Moyo ◽  
Evariste Bosco Gueguim-Kana ◽  
Ignatius Verla Nsahlai

Artificial Neural Network (ANN) and Random Forest models for predicting rumen fill of cattle and sheep were developed. Data on rumen fill were collected from studies that reported body weights, measured rumen fill and stated diets fed to animals. Animal and feed factors that affected rumen fill were identified from each study and used to create a dataset. These factors were used as input variables for predicting the weight of rumen fill. For ANN modelling, a three-layer Levenberg-Marquardt Back Propagation Neural Network was adopted and achieved 96% accuracy in prediction of the weight of rumen fill. The precision of the ANN model’s prediction of rumen fill was higher for cattle (80%) than sheep (56%). On validation, the ANN model achieved 95% accuracy in prediction of the weight of rumen fill. A Random Forest model was trained using a binary tree-based machine-learning algorithm and achieved 87% accuracy in prediction of rumen fill. The Random Forest model achieved 16% (cattle) and 57% (sheep) accuracy in validation of the prediction of rumen fill. In conclusion, the ANN model gave better predictions of rumen fill compared to the Random Forest model and should be used in predicting rumen fill of cattle and sheep.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 106
Author(s):  
Tinggui Chen ◽  
Xiaohua Yin ◽  
Lijuan Peng ◽  
Jingtao Rong ◽  
Jianjun Yang ◽  
...  

With the rapid development of “We media” technology, netizens can freely express their opinions regarding enterprise products on a network platform. Consequently, online public opinion about enterprises has become a prominent issue. Negative comments posted by some netizens may trigger negative public opinion, which can have a significant impact on an enterprise’s image. From the perspective of helping enterprises deal with negative public opinion, this paper combines user portrait technology and a random forest algorithm to help enterprises identify high-risk users who have posted negative comments and thus may trigger negative public opinion. In this way, enterprises can monitor the public opinion of high-risk users to prevent negative public opinion events. Firstly, we crawled the information of users participating in discussions of product experience, and we constructed a portrait of enterprise public opinion users. Then, the characteristics of the portraits were quantified into indicators such as the user’s activity, the user’s influence, and the user’s emotional tendency, and the indicators were sorted. According to the order of the indicators, the users were divided into high-risk, moderate-risk, and low-risk categories. Next, a supervised high-risk user identification model for this classification was established, based on a random forest algorithm. In turn, the trained random forest identifier can be used to predict whether the authors of newly published public opinion information are high-risk users. Finally, a back propagation neural network algorithm was used to identify users and compared with the results of model recognition in this paper. The results showed that the average recognition accuracy of the back propagation neural network is only 72.33%, while the average recognition accuracy of the model constructed in this paper is as high as 98.49%, which verifies the feasibility and accuracy of the proposed random forest recognition method.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Jin-Xing Liang ◽  
Jian-Fu Zhao ◽  
Ning Sun ◽  
Bao-Jun Shi

As the most common serious disaster, fire may cause a lot of damages. Early detection and treatment of fires are of great significance to ensure public safety and to reduce losses caused by fires. However, traditional fire detectors are facing some focus issues such as low sensitivity and limited detection scenes. To overcome these problems, a video fire detection hybrid method based on random forest (RF) feature selection and back propagation (BP) neural network is proposed. The improved flame color model in RGB and HSI space and the visual background extractor (ViBe) in moving target detection algorithm are used to segment the suspected flame regions. Then, multidimensional features of flames are extracted from the suspected regions, and these extracted features are combined and selected according to the RF feature importance analysis. Finally, a BP neural network model is constructed for multifeature fusion and fire recognition. The test results on several experimental video sets show that the proposed method can effectively avoid feature interference and has an excellent recognition effect on fires in a variety of scenarios. The proposed method is applicable for fire recognition applied in video surveillance and detection robots.


2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


Author(s):  
Shikha Bhardwaj ◽  
Gitanjali Pandove ◽  
Pawan Kumar Dahiya

Background: In order to retrieve a particular image from vast repository of images, an efficient system is required and such an eminent system is well-known by the name Content-based image retrieval (CBIR) system. Color is indeed an important attribute of an image and the proposed system consist of a hybrid color descriptor which is used for color feature extraction. Deep learning, has gained a prominent importance in the current era. So, the performance of this fusion based color descriptor is also analyzed in the presence of Deep learning classifiers. Method: This paper describes a comparative experimental analysis on various color descriptors and the best two are chosen to form an efficient color based hybrid system denoted as combined color moment-color autocorrelogram (Co-CMCAC). Then, to increase the retrieval accuracy of the hybrid system, a Cascade forward back propagation neural network (CFBPNN) is used. The classification accuracy obtained by using CFBPNN is also compared to Patternnet neural network. Results: The results of the hybrid color descriptor depict that the proposed system has superior results of the order of 95.4%, 88.2%, 84.4% and 96.05% on Corel-1K, Corel-5K, Corel-10K and Oxford flower benchmark datasets respectively as compared to many state-of-the-art related techniques. Conclusion: This paper depict an experimental and analytical analysis on different color feature descriptors namely, Color moment (CM), Color auto-correlogram (CAC), Color histogram (CH), Color coherence vector (CCV) and Dominant color descriptor (DCD). The proposed hybrid color descriptor (Co-CMCAC) is utilized for the withdrawal of color features with Cascade forward back propagation neural network (CFBPNN) is used as a classifier on four benchmark datasets namely Corel-1K, Corel-5K and Corel-10K and Oxford flower.


Sign in / Sign up

Export Citation Format

Share Document