Structural Analysis using Galois Lattice Concept for Strategic Business Processes Alignment

Author(s):  
Noureddine FALIH ◽  
Brahim JABIR ◽  
Loubna RABHI
2018 ◽  
Vol 210 ◽  
pp. 04016
Author(s):  
Jarosław Koszela

The article outlines selected methods for analyzing business processes: their definitions and instances. The methods for analytical processing of processes constitute a component of the Business Intelligence environment - process warehouses, including methods for analytical processing and exploration of the collected process definitions and instances - i.e. process mining. One of the main elements of the analysis of processes is to determine the similarity between them. In systems for analyzing large sets of elements, the method of determining similarity should be efficiency because is the basis for others analysis methods, e.g. clustering, classification, etc. A method for analyzing structural similarity of business processes, based on the similarity of sequences of genetic tags of such processes, was presented using the similarity analysis methods based on the editing distance and the developed methods of structural similarity: GNM, DNM, GCM, DCM. The presented similarity methods were used to clustering processes and to determine the central element of the cluster. The developed methods form the basis for the development of similarity methods extended to aspects of semantic similarity of business processes and methods of analysis and exploration of processes.


Author(s):  
Rodrigo Britto Maria ◽  
Marcus de Freitas Leal ◽  
Edgard Sousa Junior ◽  
Vinicius Leite Lemos ◽  
Patrick Magalhães Cardoso ◽  
...  

AbstractAircraft structural analysis is a process that involves several engineers working concurrently to analyze in detail all structural elements of an airframe, as well as the behavior of the aircraft structure as a whole. The airframe has to be decomposed in its major components such as fuselage sections, wings and control surfaces to allow the distribution of the analyses among the engineers. Finite element models (FEM) are created for each major component and used in the analyses. The major components, such as the wing, are further decomposed into its constituent parts, such as spars, ribs, and stringers; which might be modeled in more detail using dedicated FEMs. It’s a great challenge to manage the evolution of the structural modifications that happen during the course of these analyses. Design changes originated from stress analysis using higher fidelity FEMs have to be transferred to the lower fidelity FEMs and an assembly of the whole airframe FEM needs to be created and analyzed once again, using the correct versions of all the FEMs of the major parts. The objective of this paper is to present the results of the solution implemented by Embraer to overcome these challenges, by using the Simulation Process and Data Management (SPDM) technology. Embraer embarked on the SPDM journey eight years ago and during past years has matured various aspects of their SPDM implementation. The focus of the paper is on explaining applications of the SPDM system in the area of structural analysis at Embraer with a couple of representative business processes as examples, including the rapid generation and evaluation of aircraft assemblies and the consolidation and standardization of various simulation methods across the organization, by making those available over the SPDM platform. Key enablers for increasing simulation throughput and data traceability at Embraer are described. In addition, the approach that Embraer took for ongoing additions of new business processes to the SPDM system is presented. The results of the SPDM implementation at Embraer are encouraging, showing qualitative and quantitative gains of productivity and management of engineering data. The standardization and automation of engineering processes and the proper management of data generated by these processes are becoming an integral part of any competitive engineering department nowadays.


Author(s):  
W. H. Wu ◽  
R. M. Glaeser

Spirillum serpens possesses a surface layer protein which exhibits a regular hexagonal packing of the morphological subunits. A morphological model of the structure of the protein has been proposed at a resolution of about 25 Å, in which the morphological unit might be described as having the appearance of a flared-out, hollow cylinder with six ÅspokesÅ at the flared end. In order to understand the detailed association of the macromolecules, it is necessary to do a high resolution structural analysis. Large, single layered arrays of the surface layer protein have been obtained for this purpose by means of extensive heating in high CaCl2, a procedure derived from that of Buckmire and Murray. Low dose, low temperature electron microscopy has been applied to the large arrays.As a first step, the samples were negatively stained with neutralized phosphotungstic acid, and the specimens were imaged at 40,000 magnification by use of a high resolution cold stage on a JE0L 100B. Low dose images were recorded with exposures of 7-9 electrons/Å2. The micrographs obtained (Fig. 1) were examined by use of optical diffraction (Fig. 2) to tell what areas were especially well ordered.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


1985 ◽  
Vol 46 (2) ◽  
pp. 235-241 ◽  
Author(s):  
F. Lançon ◽  
L. Billard ◽  
J. Laugier ◽  
A. Chamberod

Sign in / Sign up

Export Citation Format

Share Document