The Impact Of A Lithospheric Quasi-Direct Current Sources On A Synchronous Generator Operation

Author(s):  
Vera Vakhnina ◽  
Dmitry Kretov ◽  
Aleksey Chernenko
2010 ◽  
Vol 171-172 ◽  
pp. 171-174
Author(s):  
Hong Cheng ◽  
Peng Kun Liu ◽  
Yu Ling Wang ◽  
Chang Xin Nai

The dipole spacing can directly affects the detecting sensitivity and accuracy in the landfill leakage detection by the high voltage direct current method. Based on the high voltage DC detecting model, the impact of dipole spacing on locating leaks is analyzed taking a single leak and multiple leaks as example. The results show that the greater the dipole spacing is, the higher the detecting sensitivity is; the smaller the dipole spacing is, the higher the detecting accuracy is. For multiple leaks, only one leak can be located when the dipole spacing is greater than the distance between the two leaks. In order to detect all leaks correctly, the dipole spacing should be smaller than the distance between the two leaks.


2021 ◽  
Author(s):  
Umme Kulsum Jhuma ◽  
Saad Mekhilef ◽  
Shameem Ahmad ◽  
Jahurul Islam ◽  
Jahidur Rahman Jesan ◽  
...  

2014 ◽  
Vol 115 (19) ◽  
pp. 193505 ◽  
Author(s):  
P. M. Mayrhofer ◽  
C. Eisenmenger-Sittner ◽  
M. Stöger-Pollach ◽  
H. Euchner ◽  
A. Bittner ◽  
...  

2020 ◽  
Vol 10 (20) ◽  
pp. 7282
Author(s):  
Zicong Zhang ◽  
Junghun Lee ◽  
Gilsoo Jang

With the continuous development of power electronics technology, variable-speed offshore wind turbines that penetrated the grid system caused the problem of inertia reduction. This study investigates the frequency stability of synchronous, offshore wind-farm integration through a modular-multilevel-converter high-voltage direct-current (MMC–HVDC) transmission system. When full-scale converter wind turbines (type 4) penetrate the AC grid, the AC system debilitates, and it becomes difficult to maintain the AC system frequency stability. In this paper, we present an improved inertial-response-control method to solve this problem. The mathematical model of the synchronous generator is based on the swing equation and is theoretically derived by establishing a MMC–HVDC. Based on the above model, the inertia constant is analyzed using a model that integrates the MMC–HVDC and offshore synchronous generator. With the new improved control method, a more sensitive and accurate inertia index can be obtained using the formula related to the effective short-circuit ratio of the AC system. Moreover, it is advantageous to provide a more accurate inertial control evaluation for AC systems under various conditions. Furthermore, the impact of the MMC–HVDC on system safety is assessed based on the capacitor time constant. This simulation was implemented using the PSCAD/EMTDC platform.


2020 ◽  
Vol 42 (01) ◽  
pp. 66-73
Author(s):  
Roberto Codella ◽  
Rosario Alongi ◽  
Luca Filipas ◽  
Livio Luzi

AbstractSeveral types of routines and methods have been experimented to gain neuromuscular advantages, in terms of exercise performance, in athletes and fitness enthusiasts. The aim of the present study was to evaluate the impact of biemispheric transcranial direct current stimulation on physical fitness indicators of healthy, physically active, men. In a randomized, single-blinded, crossover fashion, seventeen subjects (age: 30.9 ± 6.5 years, BMI: 24.8±3.1 kg/m2) underwent either stimulation or sham, prior to: vertical jump, sit & reach, and endurance running tests. Mixed repeated measures anova revealed a large main effect of stimulation for any of the three physical fitness measures. Stimulation determined increases of lower limb power (+ 5%), sit & reach amplitude (+ 9%) and endurance running capacity (+ 12%) with respect to sham condition (0.16<ηp2 < 0.41; p<0.05). Ratings-of-perceived-exertion, recorded at the end of each test session, did not change across all performances. However, in the stimulated-endurance protocol, an average lower rate-of-perceived-exertion at iso-time was inferred. A portable transcranial direct current stimulation headset could be a valuable ergogenic resource for individuals seeking to improve physical fitness in daily life or in athletic training.


2013 ◽  
Vol 199 ◽  
pp. 61-66
Author(s):  
Grzegorz Redlarski ◽  
Janusz Piechocki ◽  
Mariusz Dąbkowski

One of the important factors that affect the reliable operation of the power system and the rapid restitution after disaster is a quick and effective combining synchronous electric power facilities to operate in parallel [. Hence, diagnostics of automatic synchronizers at every stage of their life, from building a prototype, through the whole life, until removing such devices from the operation, is an extremely important and responsible activity. In ordinary practice, this action is performed by dedicated test of mechatronics systems, called simulators [2, , in close to real - or even more restricted - conditions. One of the major limitations in the relevant field undoubtedly concerns the selection of an appropriate structure and implementation of models of the angular velocity control systems involved in the process of connection. These models must be simple enough to allow computation with a frequency of kHz, and, at the same time, developed enough to be able to form diverse and close to real working conditions. For these reasons, classical approach is not possible, allowing the use of well-known Parks model [ of the synchronous generator and the complex - and often nonlinear [. Hence, considered above-mentioned requirements and indicated constraints, to test the automatic synchronizer the designers of mechatronics systems use a number of simplifications during modeling of the angular speed control systems [. However, models are not detailed enough to study the impact of changes in the shape of relevant characteristics under the influence of changes the angle of phase discrepancy in the process of connecting. Hence, this paper presents the results of the research of the currently used method of modeling the most commonly used control systems of angular velocity, in the respective systems.


2016 ◽  
Vol 37 (5) ◽  
pp. 1857-1870 ◽  
Author(s):  
Jed A Hartings ◽  
Chunyan Li ◽  
Jason M Hinzman ◽  
C William Shuttleworth ◽  
Griffin L Ernst ◽  
...  

Spreading depolarizations cause cortical electrical potential changes over a wide spectral range that includes slow potentials approaching the direct current (or 0 Hz) level. The negative direct current shift (<0.05 Hz) is an important identifier of cortical depolarization and its duration is a measure of potential tissue injury associated with longer lasting depolarizations. To determine the feasibility of monitoring the full signal bandwidth of spreading depolarizations in patients, we performed subdural electrocorticography using platinum electrode strips and direct current-coupled amplifiers in 27 patients with acute brain injury at two neurosurgical centers. While large baseline direct current offsets developed, loss of data due to amplifier saturation was minimal and rates of baseline drift throughout recordings were generally low. Transient negative direct current shifts of spreading depolarizations were easily recognized and in 306/551 (56%) cases had stereotyped, measurable characteristics. Following a standardized training session, novice scorers achieved a high degree of accuracy and interobserver reliability in identifying depolarizations, suggesting that direct current-coupled recordings can facilitate bedside diagnosis for future trials or clinical decision-making. We conclude that intracranial monitoring of slow potentials can be achieved with platinum electrodes and that unfiltered, direct current-coupled recordings are advantageous for identifying and assessing the impact of spreading depolarizations.


Sign in / Sign up

Export Citation Format

Share Document