One-Class Support Vector Machines for Structural Health Monitoring on Wave Energy Converters

Author(s):  
Stephen Adams ◽  
Ryan Meekins ◽  
Kevin Farinholt ◽  
Nathan Hipwell ◽  
Michael Desrosiers ◽  
...  
2013 ◽  
Vol 569-570 ◽  
pp. 595-602 ◽  
Author(s):  
William Finnegan ◽  
Jamie Goggins

A vital aspect of ensuring the cost effectiveness of wave energy converters (WECs) is being able to monitor their performance remotely through structural health monitoring, as these devices are deployed in very harsh environments in terms of both accessibility and potential damage to the devices. The WECs are monitored through the use of measuring equipment, which is strategically placed on the device. This measured data is then compared to the output from a numerical model of the WEC under the same ocean wave conditions. Any deviations would suggest that there are problems or issues with the WEC. The development of accurate and effective numerical models is necessary to minimise the number of times the visual, or physical, inspection of a deployed WEC is required. In this paper, a numerical wave tank model is, first, validated by comparing the waves generated to those generated experimentally using the wave flume located at the National University of Ireland, Galway. This model is then extended so it is suitable for generating real ocean waves. A wave record observed at the Atlantic marine energy test site has been replicated in the model to a high level of accuracy. A rectangular floating prism is then introduced into the model in order to explore wave-structure interaction. The dynamic response of the structure is compared to a simple analytical solution and found to be in good agreement.


2018 ◽  
Vol 9 (6) ◽  
pp. 1-20 ◽  
Author(s):  
Ali Anaissi ◽  
Nguyen Lu Dang Khoa ◽  
Thierry Rakotoarivelo ◽  
Mehrisadat Makki Alamdari ◽  
Yang Wang

2020 ◽  
pp. 147592172092064 ◽  
Author(s):  
Cong Zhou ◽  
J Geoffrey Chase

Optimizing risk treatment of structures in post-event decision-making is extremely difficult due to the lack of information on building damage/status after an event, particularly for nonlinear structures. This work develops an automated, no human intervention, modeling approach using structural health monitoring results to create accurate digital building clones of nonlinear structures for collapse prediction assessment and optimized decision-making. Model-free hysteresis loop analysis structural health monitoring method provides accurate structural health monitoring results from which model parameters of a nonlinear computational foundation model are identified. A new identifiable nonlinear smooth hysteretic model capturing essential structural dynamics and deterioration is developed to ensure robust parameter identification using support vector machines. Method performance is validated against both numerical and experimental data of a scaled 12-story reinforced concrete nonlinear structure. Results of numerical validation show an average error of 1.5% across 18 structural parameters from hysteresis loop analysis and an average error of 2.0% over 30 identified model parameters from support vector machines in the presence of 10% added root-mean-square noise. Validation using experimental data of the scale test reinforced concrete structure also shows a good match of identified hysteresis loop analysis and predicted nonlinear stiffness changes using the digital clones created with an average difference of 1.4%. More importantly, the predicted response using the digital clones for the highly nonlinear pinched hysteretic behavior matches the measured response well, with the average correlation coefficient Rcoeff = 0.92 and average root-mean-square error of 4.6% across all cases. The overall approach takes structural health monitoring from a tool providing retrospective damage data into automated prospective prediction analysis by “cloning” the structure using computational modeling, which in turn allows optimized decision-making using existing risk analyses and tools.


2021 ◽  
Vol 11 (12) ◽  
pp. 5727
Author(s):  
Sifat Muin ◽  
Khalid M. Mosalam

Machine learning (ML)-aided structural health monitoring (SHM) can rapidly evaluate the safety and integrity of the aging infrastructure following an earthquake. The conventional damage features used in ML-based SHM methodologies face the curse of dimensionality. This paper introduces low dimensional, namely, cumulative absolute velocity (CAV)-based features, to enable the use of ML for rapid damage assessment. A computer experiment is performed to identify the appropriate features and the ML algorithm using data from a simulated single-degree-of-freedom system. A comparative analysis of five ML models (logistic regression (LR), ordinal logistic regression (OLR), artificial neural networks with 10 and 100 neurons (ANN10 and ANN100), and support vector machines (SVM)) is performed. Two test sets were used where Set-1 originated from the same distribution as the training set and Set-2 came from a different distribution. The results showed that the combination of the CAV and the relative CAV with respect to the linear response, i.e., RCAV, performed the best among the different feature combinations. Among the ML models, OLR showed good generalization capabilities when compared to SVM and ANN models. Subsequently, OLR is successfully applied to assess the damage of two numerical multi-degree of freedom (MDOF) models and an instrumented building with CAV and RCAV as features. For the MDOF models, the damage state was identified with accuracy ranging from 84% to 97% and the damage location was identified with accuracy ranging from 93% to 97.5%. The features and the OLR models successfully captured the damage information for the instrumented structure as well. The proposed methodology is capable of ensuring rapid decision-making and improving community resiliency.


Sign in / Sign up

Export Citation Format

Share Document