High power electronics device IGCTs in high voltage inverter

Author(s):  
Qingguang Yu ◽  
Wenhua Liu ◽  
Qiang Song
MRS Bulletin ◽  
2005 ◽  
Vol 30 (4) ◽  
pp. 299-304 ◽  
Author(s):  
T. Paul Chow

AbstractThe successful commercialization of unipolar Schottky rectifiers in the 4H polytype of silicon carbide has resulted in a market demand for SiC high-power switching devices. This article reviews recent progress in the development of high-voltage 4H-SiC bipolar power electronics devices.We also present the outstanding material and processing challenges, reliability concerns, and future trends in device commercialization.


2019 ◽  
Vol 16 (1) ◽  
pp. 18 ◽  
Author(s):  
Thiyagarajan V ◽  
Somasundaran P

Multilevel inverter plays an important role in the field of modern power electronics and is widely being used for many high voltage and high power industrial and commercial applications. The objective of this paper is to design and simulate the modified asymmetric multilevel inverter topology with reduced number of switches. The proposed inverter topology synthesizes 21-level output voltage during symmetric operation using three DC voltage sources and twelve switches 8 main switches and 4 auxiliary switches. The different methods of calculating the switching angles are presented in this paper. The MATLAB/Simulink software is used to simulate the proposed inverter. The performance of the proposed inverter is analyzed and the corresponding simulation results are presented in this paper.


2004 ◽  
Author(s):  
Simon S. Ang ◽  
Paneer Selvam ◽  
Ajay Malshe ◽  
Fred Barlow

2019 ◽  
Vol 1309 ◽  
pp. 012016
Author(s):  
A D Kurilov ◽  
V V Belyaev ◽  
K D Nessemon ◽  
E D Besprozvannyi ◽  
A O Osin ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1228
Author(s):  
Marcin Winnicki ◽  
Artur Wiatrowski ◽  
Michał Mazur

High Power Impulse Magnetron Sputtering (HiPIMS) was used for deposition of indium tin oxide (ITO) transparent thin films at low substrate temperature. A hybrid-type composite target was self-prepared by low-pressure cold spraying process. Prior to spraying In2O3 and oxidized Sn powders were mixed in a volume ratio of 3:1. Composite In2O3/Sn coating had a mean thickness of 900 µm. HiPIMS process was performed in various mixtures of Ar:O2: (i) 100:0 vol.%, (ii) 90:10 vol.%, (iii) 75:25 vol.%, (iv) 50:50 vol.%, and (v) 0:100 vol.%. Oxygen rich atmosphere was necessary to oxidize tin atoms. Self-design, simple high voltage power switch capable of charging the 20 µF capacitor bank from external high voltage power supply worked as a power supply for an unbalanced magnetron source. ITO thin films with thickness in the range of 30–40 nm were obtained after 300 deposition pulses of 900 V and deposition time of 900 s. The highest transmission of 88% at λ = 550 nm provided 0:100 vol. % Ar:O2 mixture, together with the lowest resistivity of 0.03 Ω·cm.


Sign in / Sign up

Export Citation Format

Share Document