Model-based feedforward position control of constant curvature continuum robots using feedback linearization

Author(s):  
Valentin Falkenhahn ◽  
Alexander Hildebrandt ◽  
Rudiger Neumann ◽  
Oliver Sawodny
2019 ◽  
Vol 109 (05) ◽  
pp. 352-357
Author(s):  
C. Brecher ◽  
L. Gründel ◽  
L. Lienenlüke ◽  
S. Storms

Die Lageregelung von konventionellen Industrierobotern ist nicht auf den dynamischen Fräsprozess ausgelegt. Eine Möglichkeit, das Verhalten der Regelkreise zu optimieren, ist eine modellbasierte Momentenvorsteuerung, welche in dieser Arbeit aufgrund vieler Vorteile durch einen Machine-Learning-Ansatz erweitert wird. Hierzu wird die Umsetzung in Matlab und die simulative Evaluation erläutert, die im Anschluss das Potenzial dieses Konzeptes bestätigt.   The position control of conventional industrial robots is not designed for the dynamic milling process. One possibility to optimize the behavior of the control loops is a model-based feed-forward torque control which is supported by a machine learning approach due to many advantages. The implementation in Matlab and the simulative evaluation are explained, which subsequently confirms the potential of this concept.


Author(s):  
Vincent Aloi ◽  
Caroline Black ◽  
Caleb Rucker

Parallel continuum robots can provide compact, compliant manipulation of tools in robotic surgery and larger-scale human robot interaction. In this paper we address stiffness control of parallel continuum robots using a general nonlinear kinetostatic modeling framework based on Cosserat rods. We use a model formulation that estimates the applied end-effector force and pose using actuator force measurements. An integral control approach then modifies the commanded target position based on the desired stiffness behavior and the estimated force and position. We then use low-level position control of the actuators to achieve the modified target position. Experimental results show that after calibration of a single model parameter, the proposed approach achieves accurate stiffness control in various directions and poses.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Sven Lilge ◽  
Kathrin Nuelle ◽  
Georg Boettcher ◽  
Svenja Spindeldreier ◽  
Jessica Burgner-Kahrs

Abstract The use of continuous and flexible structures instead of rigid links and discrete joints is a growing field of robotics research. Recent work focuses on the inclusion of continuous segments in parallel robots to benefit from their structural advantages, such as a high dexterity and compliance. While some applications and designs of these novel parallel continuum robots have been presented, the field remains largely unexplored. Furthermore, an exact quantification of the kinematic advantages and disadvantages when using continuous structures in parallel robots is yet to be performed. In this paper, planar parallel robot designs using tendon actuated continuum robots instead of rigid links and discrete joints are proposed. Using the well-known 3-RRR manipulator as a reference design, two parallel continuum robots are derived. Inverse and differential kinematics of these designs are modeled using constant curvature assumptions, which can be adapted for other actuation mechanisms than tendons. Their kinematic performances are compared to the conventional parallel robot counterpart. On the basis of this comparison, the advantages and disadvantages of using continuous structures in parallel robots are quantified and analyzed. Results show that parallel continuum robots can be kinematic equivalent and exhibit similar kinematic performances in comparison to conventional parallel robots depending on the chosen design.


Author(s):  
Edgar I. Ergueta ◽  
Robert Seifried ◽  
Roberto Horowitz

This paper presents two different control strategies for paper position control in printing devices. The first strategy is based on feedback linearization plus dynamic extension (dynamic feed-back linearization). Even though this controller is very simple to design, we show that it is not able to handle actuator multiplicative uncertainties, and therefore it fails when it is implemented on the experimental setup. The second strategy we present uses similar concepts, but it is more robust since feedback linearization is used only to linearize the kinematics of the system and internal loops are used to locally control the actuator’s positions and velocities. Not only do we prove the robustness of the second control strategy, but we also show its successful implementation.


Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Jinok Shin ◽  
Kenzo Nonami ◽  
Daigo Fujiwara ◽  
Kensaku Hazawa

In this paper, we propose a model-based control system design for autonomous flight and guidance control of a small-scale unmanned helicopter. Small-scale unmanned helicopters have been studied by way of fuzzy and neural network theory, but control that is not based on a model fails to yield good stabilization performance. For this reason, we design a mathematical model and a model-based controller for a small-scale unmanned helicopter system. In order to realize a fully autonomous small-scale unmanned helicopter, we have designed a MIMO attitude controller and a trajectory controller equipped with a Kalman filter-based LQI for a small-scale unmanned helicopter. The design of the trajectory controller takes into consideration the characteristics of attitude closed-loop dynamics. Simulations and experiments have shown that the proposed scheme for attitude control and position control is very useful.


Sign in / Sign up

Export Citation Format

Share Document