Low-cost backdrivable motor control based on feed-forward/feed-back friction compensation

Author(s):  
S. Ishikawa ◽  
M. Nishio ◽  
T. Sugihara
2018 ◽  
Author(s):  
Rizki Eka Putri ◽  
Denny Darlis

This article was under review for ICELTICS 2018 -- In the medical world there is still service dissatisfaction caused by lack of blood type testing facility. If the number of tested blood arise, a lot of problems will occur so that electronic devices are needed to determine the blood type accurately and in short time. In this research we implemented an Artificial Neural Network on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board to identify the blood type. This research uses blood sample image as system input. VHSIC Hardware Discription Language is the language to describe the algorithm. The algorithm used is feed-forward propagation of backpropagation neural network. There are 3 layers used in design, they are input, hidden1, and output. At hidden1layer has two neurons. In this study the accuracy of detection obtained are 92%, 92%, 92%, 90% and 86% for 32x32, 48x48, 64x64, 80x80, and 96x96 pixel blood image resolution, respectively.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jeffrey W. Keller ◽  
Julia Balzer ◽  
Annina Fahr ◽  
Jan Lieber ◽  
Urs Keller ◽  
...  

AbstractThe question whether novel rehabilitation interventions can exploit restorative rather than compensatory mechanisms has gained momentum in recent years. Assessments measuring selective voluntary motor control could answer this question. However, while current clinical assessments are ordinal-scaled, which could affect their sensitivity, lab-based assessments are costly and time-consuming. We propose a novel, interval-scaled, computer-based assessment game using low-cost accelerometers to evaluate selective voluntary motor control. Participants steer an avatar owl on a star-studded path by moving the targeted joint of the upper or lower extremities. We calculate a target joint accuracy metric, and an outcome score for the frequency and amplitude of involuntary movements of adjacent and contralateral joints as well as the trunk. We detail the methods and, as a first proof of concept, relate the results of select children with upper motor neuron lesions (n = 48) to reference groups of neurologically intact children (n = 62) and adults (n = 64). Linear mixed models indicated that the cumulative therapist score, rating the degree of selectivity, was a good predictor of the involuntary movements outcome score. This highlights the validity of this assessgame approach to quantify selective voluntary motor control and warrants a more thorough exploration to quantify changes induced by restorative interventions.


2011 ◽  
Vol 366 (1564) ◽  
pp. 476-491 ◽  
Author(s):  
W. Pieter Medendorp

The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye–head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals.


2009 ◽  
Vol 46 (2) ◽  
pp. 183-197 ◽  
Author(s):  
Daniel Montesinos-Miracle ◽  
Samuel Galceran-Arellano ◽  
Antoni Sudrià-Andreu ◽  
Oriol Gomis-Bellmunt

2009 ◽  
Vol 12 (4) ◽  
pp. 30-38
Author(s):  
Tan Duc Tran ◽  
Thuy Phu Nguyen

In this paper, the design of the low cost INS/GPS integration system is addressed with good accuracy. The Strapdown INS (SINS) and Cascade Kalman filter have been tested to ensure that the system can be operated flexibly between feed forward and feedback modes due to various GPS conditions. The vehicle motion constraints are also utilized to reduce the INS error degradation during the periods of GPS unavailability. The experiment results shown that the INS/GPS system can be applied to land applications in challenging GPS environments.


Sign in / Sign up

Export Citation Format

Share Document