Development of Uniform Ultraviolet Light Source using Light-Emitting Diode (LED) Array for Photolithography System with Controllable Exposure Dose and Duration

Author(s):  
Erry Dwi Kurniawan ◽  
Muhammad Riswan ◽  
Mohammad Syahrian Adil Al Ba'id ◽  
Paulus Lobo Gareso ◽  
Robeth Viktoria Manurung
2010 ◽  
Vol 43 (2) ◽  
pp. 337-340 ◽  
Author(s):  
Simon K. Brayshaw ◽  
Jason W. Knight ◽  
Paul R. Raithby ◽  
Teresa L. Savarese ◽  
Stefanie Schiffers ◽  
...  

With the increase in interest in photocrystallographic experiments, the use of light-emitting diodes (LEDs) provides an alternative, low-budget light source (by comparison to lasers) and allows photocrystallographic experiments to be carried out readily. Here the design of an LED array device suitable for use in single-crystal X-ray diffraction experiments is reported, and the experimental methodology used for determining the structures of metastable species is described.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Defu Chen ◽  
Huifen Zheng ◽  
Zhiyong Huang ◽  
Huiyun Lin ◽  
Zhidong Ke ◽  
...  

The aim of this study is to develop a light-emitting diode- (LED-) based illumination system that can be used as an alternative light source forin vitrophotodynamic therapy (PDT). This illumination system includes a red LED array composed of 70 LEDs centered at 643 nm, an air-cooling unit, and a specific-designed case. The irradiance as a function of the irradiation distance between the LED array and the sample, the homogeneity and stability of irradiation, and the effect of long-time irradiation on culture medium temperature were characterized. Furthermore, the survival rate of the CNE1 cells that sensitized with 5-aminolevulinic acid after PDT treatment was evaluated to demonstrate the efficiency of the new LED-based illumination system. The obtained results show that the LED-based illumination system is a promising light source forin vitroPDT that performed in standard multiwell plate.


Author(s):  
Bahri Aydın ◽  
Armagan Ozgur ◽  
Huseyin Baran Ozdemir ◽  
Pınar Uyar Gocun ◽  
Mehmet Arda Inan ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 4852
Author(s):  
Jack Ngarambe ◽  
Inhan Kim ◽  
Geun Young Yun

Spectral power distribution (SPD) is an essential element that has considerable implications on circadian energy and the perception of lit environments. The present study assessed the potential influences of SPD on energy consumption (i.e., considering circadian energy), visual comfort, work performance and mood. Two lighting conditions based on light-emitting diode (LED) and organic light-emitting diode (OLED) were used as proxies for SPDs of different spectral content: dominant peak wavelength of 455 nm (LED) and 618 nm (OLED). Using measured photometric values, the circadian light (CL), melatonin suppression (MS), and circadian efficacy (CE) of the two lighting sources were estimated via a circadian-phototransduction model and compared. Additionally, twenty-six participants were asked to evaluate the said lit environments subjectively in terms of visual comfort and self-reported work performance. Regarding circadian lighting and the associated energy implications, the LED light source induced higher biological actions with relatively less energy than the OLED light source. For visual comfort, OLED lighting-based conditions were preferred to LED lighting-based conditions, while the opposite was true when considering work performance and mood. The current study adds to the on-going debate regarding human-centric lighting, particularly considering the role of SPD in energy-efficient and circadian lighting practices.


2018 ◽  
Vol 4 (11) ◽  
pp. 133
Author(s):  
HyungTae Kim ◽  
EungJoo Ha ◽  
KyungChan Jin ◽  
ByungWook Kim

A system for inspecting flat panel displays (FPDs) acquires scanning images using multiline charge-coupled device (CCD) cameras and industrial machine vision. Optical filters are currently installed in front of these inspection systems to obtain high-quality images. However, the combination of optical filters required is determined manually and by using empirical methods; this is referred to as passive color control. In this study, active color control is proposed for inspecting FPDs. This inspection scheme requires the scanning of images, which is achieved using a mixed color light source and a mixing algorithm. The light source utilizes high-power light emitting diodes (LEDs) of multiple colors and a communication port to dim their level. Mixed light illuminates an active-matrix organic light-emitting diode (AMOLED) panel after passing through a beam expander and after being shaped into a line beam. The image quality is then evaluated using the Tenenbaum gradient after intensity calibration of the scanning images. The dimming levels are determined using the simplex search method which maximizes the image quality. The color of the light was varied after every scan of an AMOLED panel, and the variation was iterated until the image quality approached a local maximization. The number of scans performed was less than 225, while the number of dimming level combinations was 20484. The proposed method can reduce manual tasks in setting-up inspection machines, and hence is useful for the inspection machines in FPD processes.


2020 ◽  
Vol 19 (8) ◽  
pp. 1009-1021
Author(s):  
Tae-Rin Kwon ◽  
Sung-Eun Lee ◽  
Jong Hwan Kim ◽  
You Na Jang ◽  
Su-Young Kim ◽  
...  

Ultraviolet light-emitting diodes (UV-LEDs) are a novel light source for phototherapy.


2010 ◽  
Vol 82 (7) ◽  
pp. 2734-2742 ◽  
Author(s):  
Erin L. Ratcliff ◽  
P. Alex Veneman ◽  
Adam Simmonds ◽  
Brian Zacher ◽  
Daniel Huebner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document