Mechanical design, fabrication, kinematics and dynamics modeling, multiple impedance control of a wrist rehabilitation robot

Author(s):  
Mohammad Reza Sajadi ◽  
Ali Nasr ◽  
S. Ali A. Moosavian ◽  
Hassan Zohoor
Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 110
Author(s):  
Yu Tian ◽  
Hongbo Wang ◽  
Baoshan Niu ◽  
Yongshun Zhang ◽  
Jiazheng Du ◽  
...  

Most existing finger rehabilitation robots are structurally complex and cannot be adapted to multiple work conditions, such as clinical and home. In addition, there is a lack of attention to active adduction/abduction (A/A) movement, which prevents stroke patients from opening the joint in time and affects the rehabilitation process. In this paper, an end-effector finger rehabilitation robot (EFRR) with active A/A motion that can be applied to a variety of applications is proposed. First, the natural movement curve of the finger is analyzed, which is the basis of the mechanism design. Based on the working principle of the cam mechanism, the flexion/extension (F/E) movement module is designed and the details used to ensure the safety and reliability of the device are introduced. Then, a novel A/A movement module is proposed, using the components that can easily individualized design to achieve active A/A motion only by one single motor, which makes up for the shortcomings of the existing devices. As for the control system, a fuzzy proportional-derivative (PD) adaptive impedance control strategy based on the position information is proposed, which can make the device more compliant, avoid secondary injuries caused by excessive muscle tension, and protect the fingers effectively. Finally, some preliminary experiments of the prototype are reported, and the results shows that the EFRR has good performance, which lays the foundation for future work.


2014 ◽  
Vol 672-674 ◽  
pp. 1770-1773 ◽  
Author(s):  
Fu Cheng Cao ◽  
Li Min Du

Aimed at improving the dynamic response of the lower limb for patients, an impedance control method based on sliding mode was presented to implement an active rehabilitation. Impedance control can achieve a target-reaching training without the help of a therapist and sliding mode control has a robustness to system uncertainty and vary limb strength. Simulations demonstrate the efficacy of the proposed method for lower limb rehabilitation.


2017 ◽  
Vol 11 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Vahab Khoshdel ◽  
Alireza Akbarzadeh ◽  
Nadia Naghavi ◽  
Ali Sharifnezhad ◽  
Mahdi Souzanchi-Kashani

2013 ◽  
Vol 310 ◽  
pp. 477-480 ◽  
Author(s):  
Gang Yu ◽  
Jin Wu Qian ◽  
Lin Yong Shen ◽  
Ya Nan Zhang

In traditional iatrical method, the patients with hemiplegia were assisted mainly by medical personnel to complete rehabilitation training. To make the medical personnel work easily and improve the effect of rehabilitation training, the rehabilitation robot was adopted. And the control system of a four DOF upper limb rehabilitation robot was designed based on impedance control to assist the patients with hemiplegia to complete rehabilitation training after the kinematic and kinetic analysis was finished. Then finished the analysis, simulation, and experiment of monarticular movement and multiarticulate movement after the analyzing the algorithm to tested the control system. The control system based on impedance control of the upper limb rehabilitation robot can realize the passive training which followed the planning trajectory, and active training which followed patients’ awareness of movement.


Author(s):  
Hamoon Hadian ◽  
Yasser Amooshahi ◽  
Abbas Fattah

This paper addresses the kinematics and dynamics modeling of a 4-DOF cable-driven parallel manipulator with new architecture and a typical Computed Torque Method (CTM) controller is developed for dynamic model in SimMechanics. The novelty of kinematic architecture and the closed loop formulation is presented. The workspace model of mechanism’s dynamic is obtained in an efficient and compact form by means of natural orthogonal complement (NOC) method which leads to the elimination of the nonworking kinematic-constraint wrenches and also to the derivation of the minimum number of equations. To verify the dynamic model and analyze the dynamical properties of novel 4-DOF cable-driven parallel manipulator, a typical CTM control scheme in joint-space is designed for dynamic model in SimMechanics.


Sign in / Sign up

Export Citation Format

Share Document