Prescribed-Time High-Gain Nonlinear Observer Design for Triangular Systems

Author(s):  
Ania Adil ◽  
Ibrahima N'Doye ◽  
Abdelghani Hamaz ◽  
Ali Zemouche ◽  
Taous-Meriem Laleg-Kirati
Author(s):  
Khaled Laib ◽  
Minh Tu Pham ◽  
Xuefang LIN-SHI ◽  
Redha Meghnous

Abstract This paper presents an averaged state model and the design of nonlinear observers for an on/off pneumatic actuator. The actuator is composed of two chambers and four on/off solenoid valves. The elaborated averaged state model has the advantage of using only one continuous input instead of four binary inputs. Based on this new model, a high gain observer and a sliding mode observer are designed using the piston position and the pressure measurements in one of the chambers. Finally, their closed-loop performances are verified and compared on an experimental benchmark.


2020 ◽  
Vol 25 (3) ◽  
pp. 44
Author(s):  
Abraham Efraim Rodriguez-Mata ◽  
Yaneth Bustos-Terrones ◽  
Victor Gonzalez-Huitrón ◽  
Pablo Antonio Lopéz-Peréz ◽  
Omar Hernández-González ◽  
...  

The deterioration of current environmental water sources has led to the need to find ways to monitor water quality conditions. In this paper, we propose the use of Streeter–Phelps contaminant distribution models and state estimation techniques (observer) to be able to estimate variables that are very difficult to measure in rivers with online sensors, such as Biochemical Oxygen Demand (BOD). We propose the design of a novel Fractional Order High Gain Observer (FOHO) and consider the use of Lyapunov convergence functions to demonstrate stability, as it is compared to classical extended Luenberger Observer published in the literature, to study the convergence in BOD estimation in rivers. The proposed methodology was used to estimated Dissolved oxygen (DO) and BOD monitoring of River Culiacan, Sinaloa, Mexico. The use of fractional order in high-gain observers has a very effective effect on BOD estimation performance, as shown by our numerical studies. The theoretical results have shown that robust observer design can help solve problems in estimating complex variables.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
A. E. Rodríguez-Mata ◽  
G. Flores ◽  
A. H. Martínez-Vásquez ◽  
Z. D. Mora-Felix ◽  
R. Castro-Linares ◽  
...  

A control algorithm that is robust with respect to wind disturbances for a quadrotor UAV attitude dynamics is presented. The proposed approach consists of a high-gain observer based on a discontinuous technique. Such an algorithm is embedded on board the quadrotor. The high-gain observer estimates external disturbances such as wind and parameter uncertainties, and a control algorithm is designed to compensate these undesired effects. The observer design is based on Lyapunov stability theory; simulation results and experiments validate the nonlinear observer performance and robustness of the approach under windy conditions. Also, a photogrammetry survey was carried out to develop Digital Elevation Models in order to experimentally demonstrate the effectiveness of our approach. The accuracy of such models was compared and the performance improvement is demonstrated.


Author(s):  
Wei Yue ◽  
Cong-zhi Liu ◽  
Liang Li ◽  
Xiang Chen ◽  
Fahad Muhammad

This work is focused on designing a fractional-order [Formula: see text] observer and applying it into the state of charge (SOC) estimation for lithium-ion battery pack system. Firstly, a fractional order equivalent circuit model based on the fractional capacitor is established and identified. Secondly, the SOC estimation method based on the fractional-order [Formula: see text] observer is proposed. The nonlinear intrinsic relationship between the open-circuit voltage and SOC is described as a polynomial function, and its Lipschitz proposition has been discussed. Then, the nonlinear observer design criterion is established based on the Lyapunov method. Finally, the effectiveness of the proposed method is verified with high accuracy and robustness by the experiment results.


2020 ◽  
Vol 53 (2) ◽  
pp. 5922-5927
Author(s):  
Zhaoyang Duan ◽  
Costas Kravaris

Author(s):  
Yan Liu ◽  
Dirk So¨ffker

This paper introduces a robust nonlinear control method combining classical feedback linearization and a high-gain PI-Observer (Proportional-Integral Observer) approach that can be applied to control a nonlinear single-input system with uncertainties or unknown effects. It is known that the lack of robustness of the feedback linearization approach limits its practical applications. The presented approach improves the robustness properties and extends the application area of the feedback linearization control. The approach is developed analytically and fully illustrated. An example which uses input-state linearization and PI-Observer design is given to illustrate the idea and to demonstrate the advantages.


Author(s):  
Adamu Yebi ◽  
Beshah Ayalew ◽  
Satadru Dey

This article discusses the challenges of non-intrusive state measurement for the purposes of online monitoring and control of Ultraviolet (UV) curing processes. It then proposes a two-step observer design scheme involving the estimation of distributed temperature from boundary sensing cascaded with nonlinear cure state observers. For the temperature observer, backstepping techniques are applied to derive the observer partial differential equations along with the gain kernels. For subsequent cure state estimation, a nonlinear observer is derived along with analysis of its convergence characteristics. While illustrative simulation results are included for a composite laminate curing application, it is apparent that the approach can also be adopted for other UV processing applications in advanced manufacturing.


Sign in / Sign up

Export Citation Format

Share Document