scholarly journals Dense, low-power sensor network for three-dimensional thermal characterization of large-scale atria spaces

Author(s):  
Nan-Wei Gong ◽  
Laura Ware ◽  
Steve Ray ◽  
Gary Ware ◽  
Brett Leida ◽  
...  
2008 ◽  
Vol 31 (2) ◽  
pp. 444-448 ◽  
Author(s):  
H.F. Hamann ◽  
J.A. Lacey ◽  
M. O'Boyle ◽  
R.R. Schmidt ◽  
M. Iyengar

2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 295
Author(s):  
Stephanie E. Doyle ◽  
Lauren Henry ◽  
Ellen McGennisken ◽  
Carmine Onofrillo ◽  
Claudia Di Bella ◽  
...  

Degradable bone implants are designed to foster the complete regeneration of natural tissue after large-scale loss trauma. Polycaprolactone (PCL) and hydroxyapatite (HA) composites are promising scaffold materials with superior mechanical and osteoinductive properties compared to the single materials. However, producing three-dimensional (3D) structures with high HA content as well as tuneable degradability remains a challenge. To address this issue and create homogeneously distributed PCL-nanoHA (nHA) scaffolds with tuneable degradation rates through both PCL molecular weight and nHA concentration, we conducted a detailed characterisation and comparison of a range of PCL-nHA composites across three molecular weight PCLs (14, 45, and 80 kDa) and with nHA content up to 30% w/w. In general, the addition of nHA results in an increase of viscosity for the PCL-nHA composites but has little effect on their compressive modulus. Importantly, we observe that the addition of nHA increases the rate of degradation compared to PCL alone. We show that the 45 and 80 kDa PCL-nHA groups can be fabricated via indirect 3D printing and have homogenously distributed nHA even after fabrication. Finally, the cytocompatibility of the composite materials is evaluated for the 45 and 80 kDa groups, with the results showing no significant change in cell number compared to the control. In conclusion, our analyses unveil several features that are crucial for processing the composite material into a tissue engineered implant.


2019 ◽  
Vol 31 (8) ◽  
pp. 1779-1784
Author(s):  
V. Mohanraj ◽  
R. Pavithra ◽  
M. Thenmozhi ◽  
R. Umarani

Phenyl trimethylammonium tetrachlorocobaltate, crystals were grown by slow evaporation technique. The crystal was bright, transparent. The three dimensional structure of the phenyl trimethylammonium tetrachlorocobaltate was obtained from single crystal X-ray diffraction studies. The molecule belongs to monoclinic crystal system with C2/c space group. The presence of functional groups and modes of vibrations were identified by FT-IR spectroscopy. 1H NMR spectroscopy was also used to characterise the compound and the thermal stability of the crystal was established by TGA/DT analysis. This work undergoes phase transition which makes the study interesting.


2020 ◽  
Vol 77 ◽  
pp. 04003
Author(s):  
Mark Ogbodo ◽  
Khanh Dang ◽  
Fukuchi Tomohide ◽  
Abderazek Abdallah

Neuromorphic computing tries to model in hardware the biological brain which is adept at operating in a rapid, real-time, parallel, low power, adaptive and fault-tolerant manner within a volume of 2 liters. Leveraging the event driven nature of Spiking Neural Network (SNN), neuromorphic systems have been able to demonstrate low power consumption by power gating sections of the network not driven by an event at any point in time. However, further exploration in this field towards the building of edge application friendly agents and efficient scalable neuromorphic systems with large number of synapses necessitates the building of small-sized low power spiking neuron processor core with efficient neuro-coding scheme and fault tolerance. This paper presents a spiking neuron processor core suitable for an event-driven Three-Dimensional Network on Chip (3D-NoC) SNN based neuromorphic systems. The spiking neuron Processor core houses an array of leaky integrate and fire (LIF) neurons, and utilizes a crossbar memory in modelling the synapses, all within a chip area of 0.12mm2 and was able to achieves an accuracy of 95.15% on MNIST dataset inference.


Sign in / Sign up

Export Citation Format

Share Document