Rapid Three-Dimensional Thermal Characterization of Large-Scale Computing Facilities

2008 ◽  
Vol 31 (2) ◽  
pp. 444-448 ◽  
Author(s):  
H.F. Hamann ◽  
J.A. Lacey ◽  
M. O'Boyle ◽  
R.R. Schmidt ◽  
M. Iyengar
2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 295
Author(s):  
Stephanie E. Doyle ◽  
Lauren Henry ◽  
Ellen McGennisken ◽  
Carmine Onofrillo ◽  
Claudia Di Bella ◽  
...  

Degradable bone implants are designed to foster the complete regeneration of natural tissue after large-scale loss trauma. Polycaprolactone (PCL) and hydroxyapatite (HA) composites are promising scaffold materials with superior mechanical and osteoinductive properties compared to the single materials. However, producing three-dimensional (3D) structures with high HA content as well as tuneable degradability remains a challenge. To address this issue and create homogeneously distributed PCL-nanoHA (nHA) scaffolds with tuneable degradation rates through both PCL molecular weight and nHA concentration, we conducted a detailed characterisation and comparison of a range of PCL-nHA composites across three molecular weight PCLs (14, 45, and 80 kDa) and with nHA content up to 30% w/w. In general, the addition of nHA results in an increase of viscosity for the PCL-nHA composites but has little effect on their compressive modulus. Importantly, we observe that the addition of nHA increases the rate of degradation compared to PCL alone. We show that the 45 and 80 kDa PCL-nHA groups can be fabricated via indirect 3D printing and have homogenously distributed nHA even after fabrication. Finally, the cytocompatibility of the composite materials is evaluated for the 45 and 80 kDa groups, with the results showing no significant change in cell number compared to the control. In conclusion, our analyses unveil several features that are crucial for processing the composite material into a tissue engineered implant.


2019 ◽  
Vol 31 (8) ◽  
pp. 1779-1784
Author(s):  
V. Mohanraj ◽  
R. Pavithra ◽  
M. Thenmozhi ◽  
R. Umarani

Phenyl trimethylammonium tetrachlorocobaltate, crystals were grown by slow evaporation technique. The crystal was bright, transparent. The three dimensional structure of the phenyl trimethylammonium tetrachlorocobaltate was obtained from single crystal X-ray diffraction studies. The molecule belongs to monoclinic crystal system with C2/c space group. The presence of functional groups and modes of vibrations were identified by FT-IR spectroscopy. 1H NMR spectroscopy was also used to characterise the compound and the thermal stability of the crystal was established by TGA/DT analysis. This work undergoes phase transition which makes the study interesting.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1740 ◽  
Author(s):  
Yifeng Fu ◽  
Guofeng Cui ◽  
Kjell Jeppson

The design, fabrication, and use of a hotspot-producing and temperature-sensing resistance thermometer for evaluating the thermal properties of low-dimensional materials are described in this paper. The materials that are characterized include one-dimensional (1D) carbon nanotubes, and two-dimensional (2D) graphene and boron nitride films. The excellent thermal performance of these materials shows great potential for cooling electronic devices and systems such as in three-dimensional (3D) integrated chip-stacks, power amplifiers, and light-emitting diodes. The thermometers are designed to be serpentine-shaped platinum resistors serving both as hotspots and temperature sensors. By using these thermometers, the thermal performance of the abovementioned emerging low-dimensional materials was evaluated with high accuracy.


2020 ◽  
Vol 17 (165) ◽  
pp. 20190833
Author(s):  
Malavika Nair ◽  
Jennifer H. Shepherd ◽  
Serena M. Best ◽  
Ruth E. Cameron

Micro-computed X-ray tomography (MicroCT) is one of the most powerful techniques available for the three-dimensional characterization of complex multi-phase or porous microarchitectures. The imaging and analysis of porous networks are of particular interest in tissue engineering due to the ability to predict various large-scale cellular phenomena through the micro-scale characterization of the structure. However, optimizing the parameters for MicroCT data capture and analyses requires a careful balance of feature resolution and computational constraints while ensuring that a structurally representative section is imaged and analysed. In this work, artificial datasets were used to evaluate the validity of current analytical methods by considering the effect of noise and pixel size arising from the data capture, and intrinsic structural anisotropy and heterogeneity. A novel ‘segmented percolation method’ was developed to exclude the effect of anomalous, non-representative features within the datasets, allowing for scale-invariant structural parameters to be obtained consistently and without manual intervention for the first time. Finally, an in-depth assessment of the imaging and analytical procedures are presented by considering percolation events such as micro-particle filtration and cell sieving within the context of tissue engineering. Along with the novel guidelines established for general pixel size selection for MicroCT, we also report our determination of 3 μm as the definitive pixel size for use in analysing connectivity for tissue engineering applications.


Solid Earth ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 881-895 ◽  
Author(s):  
Lurdes Martinez-Landa ◽  
Jesús Carrera ◽  
Andrés Pérez-Estaún ◽  
Paloma Gómez ◽  
Carmen Bajos

Abstract. A method developed for low-permeability fractured media was applied to understand the hydrogeology of a mine excavated in a granitic pluton. This method includes (1) identifying the main groundwater-conducting features of the medium, such as the mine, dykes, and large fractures, (2) implementing this factors as discrete elements into a three-dimensional numerical model, and (3) calibrating these factors against hydraulic data . A key question is how to identify preferential flow paths in the first step. Here, we propose a combination of several techniques. Structural geology, together with borehole sampling, geophysics, hydrogeochemistry, and local hydraulic tests aided in locating all structures. Integration of these data yielded a conceptual model of the site. A preliminary calibration of the model was performed against short-term (< 1 day) pumping tests, which facilitated the characterization of some of the fractures. The hydraulic properties were then used for other fractures that, according to geophysics and structural geology, belonged to the same families. Model validity was tested by blind prediction of a long-term (4 months) large-scale (1 km) pumping test from the mine, which yielded excellent agreement with the observations. Model results confirmed the sparsely fractured nature of the pluton, which has not been subjected to glacial loading–unloading cycles and whose waters are of Na-HCO3 type.


Sign in / Sign up

Export Citation Format

Share Document