Data-Driven Multivariable Control of a Microalgae Growth Process

Author(s):  
George Ifrim ◽  
Marian Barbu ◽  
Georgiana Horincar ◽  
Mariana Titica
2016 ◽  
Vol 49 (7) ◽  
pp. 218-223 ◽  
Author(s):  
George Ifrim ◽  
Mariana Titica ◽  
Marian Barbu ◽  
Emil Ceanga ◽  
Sergiu Caraman

Author(s):  
FRANCESCO DI MAIO ◽  
ENRICO ZIO

This paper presents a data-driven, similarity-based approach for prognostics of industrial and structural components. The potentiality of the approach is demonstrated on a problem of crack propagation, taken from literature. The crack growth process is described by a nonlinear model affected by nonadditive noises. A comparison is provided with an existing Monte Carlo-based estimation method, known as particle filtering.


Author(s):  
J.A. Eades ◽  
E. Grünbaum

In the last decade and a half, thin film research, particularly research into problems associated with epitaxy, has developed from a simple empirical process of determining the conditions for epitaxy into a complex analytical and experimental study of the nucleation and growth process on the one hand and a technology of very great importance on the other. During this period the thin films group of the University of Chile has studied the epitaxy of metals on metal and insulating substrates. The development of the group, one of the first research groups in physics to be established in the country, has parallelled the increasing complexity of the field.The elaborate techniques and equipment now needed for research into thin films may be illustrated by considering the plant and facilities of this group as characteristic of a good system for the controlled deposition and study of thin films.


Author(s):  
T. Sato ◽  
S. Kitamura ◽  
T. Sueyoshl ◽  
M. Iwatukl ◽  
C. Nielsen

Recently, the growth process and relaxation process of crystalline structures were studied by observing a SI nano-pyramid which was built on a Si surface with a UHV-STM. A UHV-STM (JEOL JSTM-4000×V) was used for studying a heated specimen, and the specimen was kept at high temperature during observation. In this study, the nano-fabrication technique utilizing the electromigration effect between the STM tip and the specimen was applied. We observed Si atoms migrated towords the tip on a high temperature Si surface.Clean surfaces of Si(lll)7×7 and Si(001)2×l were prepared In the UHV-STM at a temperature of approximately 600 °C. A Si nano-pyramid was built on the Si surface at a tunneling current of l0nA and a specimen bias voltage of approximately 0V in both polarities. During the formation of the pyramid, Images could not be observed because the tip was stopped on the sample. After the formation was completed, the pyramid Image was observed with the same tip. After Imaging was started again, the relaxation process of the pyramid started due to thermal effect.


Author(s):  
H. L. Tsai ◽  
J. W. Lee

Growth of GaAs on Si using epitaxial techniques has been receiving considerable attention for its potential application in device fabrication. However, because of the 4% lattice misfit between GaAs and Si, defect generation at the GaAs/Si interface and its propagation to the top portion of the GaAs film occur during the growth process. The performance of a device fabricated in the GaAs-on-Si film can be degraded because of the presence of these defects. This paper describes a HREM study of the effects of both the substrate surface quality and postannealing on the defect propagation and elimination.The silicon substrates used for this work were 3-4 degrees off [100] orientation. GaAs was grown on the silicon substrate by molecular beam epitaxy (MBE).


Sign in / Sign up

Export Citation Format

Share Document