RF Detection and Classification of Unmanned Aerial Vehicles in Environments with Wireless Interference

Author(s):  
Carolyn J. Swinney ◽  
John C. Woods
10.37105/sd.5 ◽  
2018 ◽  
Vol 4 ◽  
pp. 22-26
Author(s):  
Michalska Anna ◽  
Karpińska Katarzyna

The main focus of this paper is the capabilities of Unmanned Aerial Vehicles as a military logistic support in conflicts areas. The conducted research addresses the problems of traditional military delivery methods. Next, the problem of using UAVs only for civilian purposes is considered. The paper begins with short elucidation of logistic support and further provides the classification of logistic materials and discusses five categories of military equipment from the logistics point of view. Next, the paper discusses the characteristics of the parameters and properties of the chosen existing UAVs that are used for the delivery of materials. Consequently, a comparison of the UAVs is carried out, and new technologies for logistic transport are presented. This paper is concluded with the claim that it is necessary to modernize the process of logistic support in the military.


2018 ◽  
Vol 161 ◽  
pp. 03023
Author(s):  
Tien Ngo ◽  
Mehmet Guzey ◽  
Vladimir Dashevsky

Existing examples of prototypes of ground-based robotic platforms used as a landing site for unmanned aerial vehicles are considered. In some cases, they are equipped with a maintenance mechanism for the power supply module. The main requirements for robotic multi-copter battery maintenance systems depending on operating conditions, required processing speed, operator experience and other parameters are analyzed. The key issues remain questions of the autonomous landing of the unmanned aerial vehicles on the platform and approach to servicing battery. The existing prototypes of service robotic platforms are differed in the complexity of internal mechanisms, speed of service, algorithms of joint work of the platform and unmanned aerial vehicles during the landing and maintenance of the battery. The classification of robotic systems for servicing the power supply of multi-copter batteries criteria is presented using the following: the type of basing, the method of navigation during landing, the shape of the landing pad, the method of restoring the power supply module. The proposed algorithmic model of the operation of battery power maintenance system of the multi-copter on ground-based robotic platform during solving the target agrarian problem is described. Wireless methods of battery recovery are most promising, so further development and prototyping of a wireless charging station for multi-copter batteries will be developed.


Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 93
Author(s):  
Yaoxin Zheng ◽  
Shiyan Li ◽  
Kang Xing ◽  
Xiaojuan Zhang

In the past two decades, unmanned aerial vehicles (UAVs) have been used in many scientific research fields for various applications. In particular, the use of UAVs for magnetic surveys has become a hot spot and is expected to be actively applied in the future. A considerable amount of literature has been published on the use of UAVs for magnetic surveys, however, how to choose the platform and reduce the interference of UAV to the collected data have not been discussed systematically. There are two primary aims of this study: (1) To ascertain the basis of UAV platform selection and (2) to investigate the characteristics and suppression methods of UAV magnetic interference. Systematic reviews were performed to summarize the results of 70 academic studies (from 2005 to 2021) and outline the research tendencies for applying UAVs in magnetic surveys. This study found that multi-rotor UAVs have become the most widely used type of UAVs in recent years because of their advantages such as easiness to operate, low cost, and the ability of flying at a very low altitude, despite their late appearance. With the improvement of the payload capacity of UAVs, to use multiple magnetometers becomes popular since it can provide more abundant information. In addition, this study also found that the most commonly used method to reduce the effects of the UAV’s magnetic interference is to increase the distance between the sensors and the UAV, although this method will bring about other problems, e.g., the directional and positional errors of sensors caused by erratic movements, the increased risk of impact to the magnetometers. The pros and cons of different types of UAV, magnetic interference characteristics and suppression methods based on traditional aeromagnetic compensation and other methods are discussed in detail. This study contributes to the classification of current UAV applications as well as the data processing methods in magnetic surveys.


2018 ◽  
Vol 6 (4) ◽  
pp. 195-211 ◽  
Author(s):  
Steven E. Franklin

Forest inventory, monitoring, and assessment requires accurate tree species identification and mapping. Recent experiences with multispectral data from small fixed-wing and rotary blade unmanned aerial vehicles (UAVs) suggest a role for this technology in the emerging paradigm of enhanced forest inventory (EFI). In this paper, pixel-based and object-based image analysis (OBIA) methods were compared in UAV-based tree species classification of nine commercial tree species in mature eastern Ontario mixedwood forests. Unsupervised clustering and supervised classification of tree crown pixels yielded approximately 50%–60% classification accuracy overall; OBIA with image segmentation to delineate tree crowns and machine learning yielded up to 80% classification accuracy overall. Spectral response patterns and tree crown shape and geometric differences were interpreted in context of their ability to separate tree species of interest with these classification methods. Accuracy assessment was based on field-based forest inventory tree species identification. The paper provides a brief summary of future research issues that will influence the growth of this geomatics innovation in forest tree species classification and forest inventory.


2021 ◽  
Author(s):  
Shubo Yang ◽  
Yang Luo ◽  
Wang Miao ◽  
Changhao Ge ◽  
Wenjian Sun ◽  
...  

With the proliferation of Unmanned Aerial Vehicles (UAVs) to provide diverse critical services, the accurate detection of these small devices and the efficient classification of their flight modes are of paramount importance. In this paper, we propose a joint Feature Engineering Generator (FEG) and Multi-Channel Deep Neural Network (MC-DNN) approach.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8253
Author(s):  
Eulalia Balestrieri ◽  
Pasquale Daponte ◽  
Luca De Vito ◽  
Francesco Picariello ◽  
Ioan Tudosa

Unmanned aerial vehicles’ (UAVs) safety has gained great research interest due to the increase in the number of UAVs in circulation and their applications, which has inevitably also led to an increase in the number of accidents in which these vehicles are involved. The paper presents a classification of UAV safety solutions that can be found in the scientific literature, putting in evidence the fundamental and critical role of sensors and measurements in the field. Proposals from research on each proposed class concerning flight test procedures, in-flight solutions including soft propeller use, fault and damage detection, collision avoidance and safe landing, as well as ground solution including testing and injury and damage quantification measurements are discussed.


Sign in / Sign up

Export Citation Format

Share Document