High aspect ratio via etching for dual damascene process in a inductively coupled plasma (ICP) etcher

Author(s):  
Kuk-Han Yoon ◽  
Woo-Sung Cho ◽  
Jae-Hyun Park ◽  
Jae-Hee Ha ◽  
Jin-Won Park
Author(s):  
Gang Zhao ◽  
Qiong Shu ◽  
Yue Li ◽  
Jing Chen

A novel technology is developed to fabricate high aspect ratio bulk titanium micro-parts by inductively coupled plasma (ICP) etching. An optimized etching rate of 0.9 μm/min has been achieved with an aspect ratio higher than 10:1. For the first time, SU-8 is used as titanium etching mask instead of the traditional hard mask such as TiO2 or SiO2. With an effective selectivity of 3 and a spun-on thickness beyond 100 μm, vertical etching sidewall and low sidewall roughness are obtained. Ultra-deep titanium etching up to 200 μm has been realized, which is among the best of the present reports. Titanium micro-springs and planks are successfully fabricated with this approach.


Author(s):  
Karen M. Dowling ◽  
Ateeq J. Suria ◽  
Yoonjin Won ◽  
Ashwin Shankar ◽  
Hyoungsoon Lee ◽  
...  

High aspect ratio microchannels using high thermal conductivity materials such as silicon carbide (SiC) have recently been explored to locally cool micro-scale power electronics that are prone to on-chip hot spot generation. Analytical and finite element modeling shows that SiC-based microchannels used for localized cooling should have high aspect ratio features (above 8:1) to obtain heat transfer coefficients (300 to 600 kW/m2·K) required to obtain gallium nitride (GaN) device channel temperatures below 100°C. This work presents experimental results of microfabricating high aspect ratio microchannels in a 4H-SiC substrate using inductively coupled plasma (ICP) etching. Depths of 90 μm and 80 μm were achieved with a 5:1 and 12:1 aspect ratio, respectively. This microfabrication process will enable the integration of microchannels (backside features) with high-power density devices such as GaN-on-SiC based electronics, as well as other SiC-based microfluidic applications.


Sign in / Sign up

Export Citation Format

Share Document