On test compaction objectives for combinational and sequential circuits

Author(s):  
I. Pomeranz ◽  
S.M. Reddy
2015 ◽  
Vol 13 (05) ◽  
pp. 1550038 ◽  
Author(s):  
Pouran Houshmand ◽  
Majid Haghparast

Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.


2019 ◽  
Vol 40 (4) ◽  
pp. 363-367 ◽  
Author(s):  
Sapna Rathi ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract At present, photonic crystals (PhCs) are used to design various combinational and sequential circuits. In this paper, an all-optical one-bit magnitude comparator is proposed using PhC waveguide without using nonlinear material. It is based on beam interference principle, using T-shaped lattice with silicon dielectric rods in air background. It is demonstrated through finite-difference time-domain simulation and verified numerically using MATLAB simulation. The size of PhC lattice structure can be as small as 19.167a×19.167a, where ‘a’ is the lattice constant of the PhC.


Sign in / Sign up

Export Citation Format

Share Document