In-process quality monitoring for the high speed high volume manufacturing environment

Author(s):  
P.W. Gold
2021 ◽  
Author(s):  
Fang Wei ◽  
Chenming Zhang ◽  
Honglin Meng ◽  
Zhihao Chu ◽  
Chao Huang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


2015 ◽  
Author(s):  
Rodrigo Linares ◽  
German Vergara ◽  
Raúl Gutiérrez ◽  
Carlos Fernández ◽  
Víctor Villamayor ◽  
...  

2021 ◽  
Author(s):  
Shruti Choudhary ◽  
Michael J Durkin ◽  
Daniel C Stoeckel ◽  
Heidi M Steinkamp ◽  
Martin H Thornhill ◽  
...  

Objectives: To determine the impact of various aerosol mitigation interventions and establish duration of aerosol persistence in a variety of dental clinic configurations. Methods: We performed aerosol measurement studies in endodontic, orthodontic, periodontic, pediatric, and general dentistry clinics. We used an optical aerosol spectrometer and wearable particulate matter sensors to measure real-time aerosol concentration from the vantage point of the dentist during routine care in a variety of clinic configurations (e.g, open bay, single room, partitioned operatories). We compared the impact of aerosol mitigation strategies [ventilation and high-volume evacuation (HVE)] and prevalence of particulate matter in the dental clinic environment before, during and after high-speed drilling, slow speed drilling and ultrasonic scaling procedures. Results: Conical and ISOVAC HVE were superior to standard tip evacuation for aerosol-generating procedures. When aerosols were detected in the environment, they were rapidly dispersed within minutes of completing the aerosol-generating procedure. Few aerosols were detected in dental clinics, regardless of configuration, when conical and ISOVAC HVE were used. Conclusions: Dentists should consider using conical or ISOVAC HVE rather than standard tip evacuators to reduce aerosols generated during routine clinical practice. Furthermore, when such effective aerosol mitigation strategies are employed, dentists need not leave dental chairs fallow between patients as aerosols are rapidly dispersed. Clinical Significance: ISOVAC HVE is highly effective in reducing aerosol emissions. With adequate ventilation and HVE use, dental fallow time can be reduced to 5 minutes.


Sign in / Sign up

Export Citation Format

Share Document