Three-phase Four-Wire Shunt Active Filter to Reduce Voltage and Current Distortions in Distribution Systems

Author(s):  
Robinson Figueiredo de Camargo ◽  
Humberto Pinheiro
2014 ◽  
Vol 573 ◽  
pp. 40-45
Author(s):  
S.S. Lalitha Maheswari ◽  
V. Revathi ◽  
S. Muralidharan

This paper presents a comparative study on performance of conventional PI controller and fuzzy controller on three phase, three wire voltage source inverter based shunt active filter that is used to compensate the harmonics currents drawn by non-linear loads in distribution systems. Hysteresis PWM method is used to generate the pulses to the switches used in active filter. The compensation is based on PLL method of fundamental current extraction. The nonlinear load taken into account is a three phase diode bridge rectifier.


2007 ◽  
Vol 12 (1) ◽  
pp. 63-70
Author(s):  
Robinson Figueiredo de Camargo ◽  
Hilton Abílio Gründling ◽  
Humberto Pinheiro

2020 ◽  
Vol 15 (1) ◽  
pp. 181-186
Author(s):  
Tilak Giri ◽  
Ram Prasad Pandey ◽  
Sabin Bhandari ◽  
Sujan Moktan ◽  
Lagat Karki

Due to intensive use of power converters and other non-linear loads, power quality is degrading. The presence of harmonics in the power lines result in greater power losses in distribution, interference problems in communication systems. Non linearity reduces the efficiency and power factor of the system. As the power factor reduces, the reactive power demanded from the supply increases which have no any contribution in energy transfer, so compensation is required. For this, shunt passive filter has been developed but it is bulky and frequency dependent and has many drawbacks. In contrast to passive filter, shunt active filter (SAF) has been developed which is smaller and has wide range of applications. In this paper, shunt active filter based on p-q theory is demonstrated for compensating reactive power and current harmonics. Simulation has been done with and without SAF and results are presented and ended with recommendation and conclusion. An effort is made to reduce the THD of the source current below 5% (specified by IEEE).


Author(s):  
Suresh Mikkili ◽  
Adinarayana Padamati

Abstract In this research paper, the shunt active filter (SHAF) is used to improve the power quality of electrical network by mitigating the harmonics with the help of different control strategies (p-q control strategy, Id-Iq control strategy, PHC control strategy) for three phase three wire system. It is quite difficult to optimize the performance of power system networks using conventional methods, because of complex nature of the systems that are highly non-linear and non-stationary. Three phase reference current waveforms generated by the proposed schemes are tracked by three phase voltage source converter in a hysteresis band control scheme. The performance of proposed control strategies has been evaluated in terms of harmonic mitigation and DC link voltage regulation under various source voltage conditions. The proposed SHAF with different control strategies is able to eliminate uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/Simulink software are presented to support the feasibility of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document