A Real-time Web-based Wildfire Simulation System

Author(s):  
Rui Wu ◽  
Chao Chen ◽  
Sajjad Ahmad ◽  
John M. Volk ◽  
Cristina Luca ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4045
Author(s):  
Alessandro Sassu ◽  
Jose Francisco Saenz-Cogollo ◽  
Maurizio Agelli

Edge computing is the best approach for meeting the exponential demand and the real-time requirements of many video analytics applications. Since most of the recent advances regarding the extraction of information from images and video rely on computation heavy deep learning algorithms, there is a growing need for solutions that allow the deployment and use of new models on scalable and flexible edge architectures. In this work, we present Deep-Framework, a novel open source framework for developing edge-oriented real-time video analytics applications based on deep learning. Deep-Framework has a scalable multi-stream architecture based on Docker and abstracts away from the user the complexity of cluster configuration, orchestration of services, and GPU resources allocation. It provides Python interfaces for integrating deep learning models developed with the most popular frameworks and also provides high-level APIs based on standard HTTP and WebRTC interfaces for consuming the extracted video data on clients running on browsers or any other web-based platform.


2011 ◽  
Vol 130-134 ◽  
pp. 2684-2687 ◽  
Author(s):  
Kai Xu ◽  
Yan Lv ◽  
Guang Jin

Semi-physical simulation of attitude control system is the more synthetically test and verify for designing of small satellite control system. It is an important means of small satellite development. However, the results of current semi-physical simulation system have a lot of non-intuitive. Compare with the actual environment, the simulation environment still has striking disparity. So the shortcomings affect precision of simulation. Based on the virtual display technology, the group semi-physical simulation system has been constructed for attitude control of small satellite due to the combination with xPC real-time environment, the simulation computer, high-precision single-axis air-bearing turntable, reaction wheel, air thrust device, fiber gyroscopes, sensors synchronizer, power subsystem and wireless devices virtual display computer etc. Semi-physical simulation achieved the visual simulation in orbit and tracked new information of virtual environment of space into real-time simulation computer. Simulation results show that the simulation system for real-time attitude and orbit position of small satellite semi-physical simulation has an excellent display effect. At the same time, Real-time transfuse of orbit information provides a more accurate space environment simulation. The simulation system of small satellite attitude control to design and evaluate the more direct and convenient.


2010 ◽  
Vol 11 (2) ◽  
pp. 87-90 ◽  
Author(s):  
Gerald H. Stein ◽  
Ayako Shibata ◽  
Miho Kojima Bautista ◽  
Yasuharu Tokuda

Healthcare ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 285
Author(s):  
Chuchart Pintavirooj ◽  
Tanapon Keatsamarn ◽  
Treesukon Treebupachatsakul

Telemedicine has become an increasingly important part of the modern healthcare infrastructure, especially in the present situation with the COVID-19 pandemics. Many cloud platforms have been used intensively for Telemedicine. The most popular ones include PubNub, Amazon Web Service, Google Cloud Platform and Microsoft Azure. One of the crucial challenges of telemedicine is the real-time application monitoring for the vital sign. The commercial platform is, by far, not suitable for real-time applications. The alternative is to design a web-based application exploiting Web Socket. This research paper concerns the real-time six-parameter vital-sign monitoring using a web-based application. The six vital-sign parameters are electrocardiogram, temperature, plethysmogram, percent saturation oxygen, blood pressure and heart rate. The six vital-sign parameters were encoded in a web server site and sent to a client site upon logging on. The encoded parameters were then decoded into six vital sign signals. Our proposed multi-parameter vital-sign telemedicine system using Web Socket has successfully remotely monitored the six-parameter vital signs on 4G mobile network with a latency of less than 5 milliseconds.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 357
Author(s):  
Dae-Hyun Jung ◽  
Na Yeon Kim ◽  
Sang Ho Moon ◽  
Changho Jhin ◽  
Hak-Jin Kim ◽  
...  

The priority placed on animal welfare in the meat industry is increasing the importance of understanding livestock behavior. In this study, we developed a web-based monitoring and recording system based on artificial intelligence analysis for the classification of cattle sounds. The deep learning classification model of the system is a convolutional neural network (CNN) model that takes voice information converted to Mel-frequency cepstral coefficients (MFCCs) as input. The CNN model first achieved an accuracy of 91.38% in recognizing cattle sounds. Further, short-time Fourier transform-based noise filtering was applied to remove background noise, improving the classification model accuracy to 94.18%. Categorized cattle voices were then classified into four classes, and a total of 897 classification records were acquired for the classification model development. A final accuracy of 81.96% was obtained for the model. Our proposed web-based platform that provides information obtained from a total of 12 sound sensors provides cattle vocalization monitoring in real time, enabling farm owners to determine the status of their cattle.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Lilac Al-Safadi

This study describes the design of a real-time interactive multimedia teleradiology system and assesses how the system is used by referring physicians in point-of-care situations and supports or hinders aspects of physician-radiologist interaction. We developed a real-time multimedia teleradiology management system that automates the transfer of images and radiologists’ reports and surveyed physicians to triangulate the findings and to verify the realism and results of the experiment. The web-based survey was delivered to 150 physicians from a range of specialties. The survey was completed by 72% of physicians. Data showed a correlation between rich interactivity, satisfaction, and effectiveness. The results of our experiments suggest that real-time multimedia teleradiology systems are valued by referring physicians and may have the potential for enhancing their practice and improving patient care and highlight the critical role of multimedia technologies to provide real-time multimode interactivity in current medical care.


Author(s):  
Yuliang Qiao ◽  
Guo-ping Liu ◽  
Geng Zheng ◽  
Wenshan Hu

Sign in / Sign up

Export Citation Format

Share Document