A Wideband Tightly Coupled Wide-angle Impedance Matching Layer

Author(s):  
Yan Li ◽  
Shaoqiu Xiao ◽  
Zhangjing Wang
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Meng Xiang ◽  
Yu Xiao ◽  
Bin Xi ◽  
Yue Zhang ◽  
Shiyou Xu

A wideband, low cross-polarization, high-gain, and wide-angle scanning antenna array is presented in this paper. The antenna array contains 8 subarrays in the horizontal dimension, and each subarray contains 4 unit cells. A two-side printed dipole with an amendatory equivalent circuit model is adopted, and the metal vias are introduced in the element design to ameliorate the cross-polarization level. A radome, acting as the wide-angle impedance matching layer, is introduced to achieve wide-angle scanning. A prototype of a 4 × 8 array is fabricated and measured. The results show that the operating bandwidth of aperture efficiency (BWAE) above 60% is about 26.7% from 2.6 GHz to 3.4 GHz. The measured scanning loss in the H-plane is 2.7 dB when scanning up to 60° with active voltage standing wave ratio (VSWR) <3, and the gain can achieve 21 dB at 3 GHz with a cross-polarization level below −30 dB at all angles.


2021 ◽  
Vol 36 (7) ◽  
pp. 872-878
Author(s):  
Yuan Ye ◽  
Zhao Huang ◽  
Yun Jiang ◽  
Li-an Bian ◽  
Chang Zhu ◽  
...  

A low profile ultra-wideband tightly coupled dipole array is studied. The antenna elements are fed by Marchand baluns of small size and low cost. A metasurface based wide-angle impedance matching (MSWAIM) layer is introduced to replace the traditional dielectric WAIM, improving the beam scan performance and reducing the antenna profile. The simulation shows that the proposed antenna array can operate over 2.4-12.4 GHz, approximately 5:1 bandwidth with maximum scanning angle of 50o for both E plane and 45o for H plane. The antenna profile above the ground is only 0.578λH at the highest operating frequency. This antenna array can find its application in the forthcoming massive MIMO beamforming systems for 5G.


2018 ◽  
Vol 25 (4) ◽  
pp. 707-714 ◽  
Author(s):  
Yuefang Zhang ◽  
Shunhua Liu ◽  
wanJun Hao

Abstract Double-layer absorbing cement-based composites with the thickness of 10 mm were prepared, including different replacement levels of fly ash (FA) in the absorbing layer as well as the matching layer for impedance matching. Waste polyethylene terephthalate bottle fragment was introduced as electromagnetic transparent reinforcement aggregate. Carbon black was used to be original absorbent in the absorbing layer. The microstructure and electromagnetic parameters of FA were closely looked at through scanning electron microscope, X-ray diffraction, and analyzer of vector network. The absorption and mechanical properties of cement-based composites were tested. It turned out that when the optimal replacement ratio of FA in the absorbing layer and matching layer gets to 50%:30%, the minimum value of reflection loss achieves −22.3 dB at 13.2 GHz; also, the value of absorption bandwidth that is effective (<−8 dB) is 6.4 GHz. Ni-Zn ferrite proves to be a feasible absorbent that is additional for the matching layer compared to what is added to the absorbing layer. The compressive strength of all the mixtures decreased, while the flexural strength decreased first and then increased with the rise of the FA replacement level.


2019 ◽  
Vol 67 (10) ◽  
pp. 6401-6409 ◽  
Author(s):  
Fu-Long Jin ◽  
Xiao Ding ◽  
You-Feng Cheng ◽  
Bing-Zhong Wang ◽  
Wei Shao

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4015 ◽  
Author(s):  
Jeong ◽  
Park ◽  
Lee

This paper presents the broadband antenna for the microwave radiometric sensing of internal body temperature. For broadband operation, the bow-tie antenna was designed and backed with a cylindrical cavity, which decreased environmental electromagnetic interference and also improved the directivity of the antenna. The broadband impedance-transforming balun in microstrip form was also designed to feed the bow-tie antenna, and was located inside the cavity. An impedance-matching dielectric layer (IMDL) was introduced on top of the bow-tie antenna, for impedance match with the human body with high permittivity. The fabricated antenna was measured in free space with the IMDL removed, showing an input reflection coefficient lower than −10 dB from 2.64 to > 3.60 GHz with antenna gain over 6.0 dBi and radiation efficiency over 74.7% from 2.7 to 3.5 GHz. The IMDL was re-installed on the cavity-backed bow-tie antenna to measure the antenna performance for the human head with relative permittivity of about 40. The measured reflection coefficient was as low as −28.9 dB at 2.95 GHz and lower than −10 dB from 2.65 to > 3.5 GHz. It was also shown that the designed antenna recovered a good impedance match by adjusting the permittivity and thickness of the IMDL for the different parts of the human body with different permittivities.


2020 ◽  
Vol 68 (8) ◽  
pp. 6022-6031
Author(s):  
Fu-Long Jin ◽  
Xiao Ding ◽  
You-Feng Cheng ◽  
Bing-Zhong Wang ◽  
Wei Shao

Sign in / Sign up

Export Citation Format

Share Document